| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dmres 6029 | . . . 4
⊢ dom
(𝑆 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑆) | 
| 2 |  | nosupres.1 | . . . . . . . . 9
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | 
| 3 | 2 | nosupno 27749 | . . . . . . . 8
⊢ ((𝐴 ⊆ 
No  ∧ 𝐴 ∈
V) → 𝑆 ∈  No ) | 
| 4 | 3 | 3ad2ant2 1134 | . . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑆 ∈  No
) | 
| 5 |  | nodmord 27699 | . . . . . . 7
⊢ (𝑆 ∈ 
No  → Ord dom 𝑆) | 
| 6 | 4, 5 | syl 17 | . . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑆) | 
| 7 |  | dmeq 5913 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) | 
| 8 | 7 | eleq2d 2826 | . . . . . . . . . . . . 13
⊢ (𝑝 = 𝑈 → (𝐺 ∈ dom 𝑝 ↔ 𝐺 ∈ dom 𝑈)) | 
| 9 |  | breq2 5146 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑈 → (𝑣 <s 𝑝 ↔ 𝑣 <s 𝑈)) | 
| 10 | 9 | notbid 318 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑈 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑣 <s 𝑈)) | 
| 11 |  | reseq1 5990 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) | 
| 12 | 11 | eqeq1d 2738 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) | 
| 13 | 10, 12 | imbi12d 344 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑈 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 14 | 13 | ralbidv 3177 | . . . . . . . . . . . . 13
⊢ (𝑝 = 𝑈 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 15 | 8, 14 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑝 = 𝑈 → ((𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) | 
| 16 | 15 | rspcev 3621 | . . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝐴 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 17 | 16 | 3impb 1114 | . . . . . . . . . 10
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 18 |  | dmeq 5913 | . . . . . . . . . . . . 13
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) | 
| 19 | 18 | eleq2d 2826 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝)) | 
| 20 |  | breq2 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑝 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝)) | 
| 21 | 20 | notbid 318 | . . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝)) | 
| 22 |  | reseq1 5990 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) | 
| 23 | 22 | eqeq1d 2738 | . . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) | 
| 24 | 21, 23 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 25 | 24 | ralbidv 3177 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 26 | 19, 25 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) | 
| 27 | 26 | cbvrexvw 3237 | . . . . . . . . . 10
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 28 | 17, 27 | sylibr 234 | . . . . . . . . 9
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 29 |  | eleq1 2828 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝐺 → (𝑦 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) | 
| 30 |  | suceq 6449 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐺 → suc 𝑦 = suc 𝐺) | 
| 31 | 30 | reseq2d 5996 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐺 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝐺)) | 
| 32 | 30 | reseq2d 5996 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐺 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝐺)) | 
| 33 | 31, 32 | eqeq12d 2752 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐺 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) | 
| 34 | 33 | imbi2d 340 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐺 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 35 | 34 | ralbidv 3177 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝐺 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) | 
| 36 | 29, 35 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝐺 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) | 
| 37 | 36 | rexbidv 3178 | . . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) | 
| 38 | 37 | elabg 3675 | . . . . . . . . . 10
⊢ (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) | 
| 39 | 38 | 3ad2ant2 1134 | . . . . . . . . 9
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) | 
| 40 | 28, 39 | mpbird 257 | . . . . . . . 8
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) | 
| 41 | 40 | 3ad2ant3 1135 | . . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) | 
| 42 |  | iffalse 4533 | . . . . . . . . . . 11
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | 
| 43 | 2, 42 | eqtrid 2788 | . . . . . . . . . 10
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | 
| 44 | 43 | dmeqd 5915 | . . . . . . . . 9
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | 
| 45 |  | iotaex 6533 | . . . . . . . . . 10
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ∈ V | 
| 46 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) | 
| 47 | 45, 46 | dmmpti 6711 | . . . . . . . . 9
⊢ dom
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} | 
| 48 | 44, 47 | eqtrdi 2792 | . . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) | 
| 49 | 48 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑆 = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) | 
| 50 | 41, 49 | eleqtrrd 2843 | . . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑆) | 
| 51 |  | ordsucss 7839 | . . . . . 6
⊢ (Ord dom
𝑆 → (𝐺 ∈ dom 𝑆 → suc 𝐺 ⊆ dom 𝑆)) | 
| 52 | 6, 50, 51 | sylc 65 | . . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑆) | 
| 53 |  | dfss2 3968 | . . . . 5
⊢ (suc
𝐺 ⊆ dom 𝑆 ↔ (suc 𝐺 ∩ dom 𝑆) = suc 𝐺) | 
| 54 | 52, 53 | sylib 218 | . . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑆) = suc 𝐺) | 
| 55 | 1, 54 | eqtrid 2788 | . . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑆 ↾ suc 𝐺) = suc 𝐺) | 
| 56 |  | dmres 6029 | . . . 4
⊢ dom
(𝑈 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑈) | 
| 57 |  | simp2l 1199 | . . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐴 ⊆  No
) | 
| 58 |  | simp31 1209 | . . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 ∈ 𝐴) | 
| 59 | 57, 58 | sseldd 3983 | . . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 ∈  No
) | 
| 60 |  | nodmord 27699 | . . . . . . 7
⊢ (𝑈 ∈ 
No  → Ord dom 𝑈) | 
| 61 | 59, 60 | syl 17 | . . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑈) | 
| 62 |  | simp32 1210 | . . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈) | 
| 63 |  | ordsucss 7839 | . . . . . 6
⊢ (Ord dom
𝑈 → (𝐺 ∈ dom 𝑈 → suc 𝐺 ⊆ dom 𝑈)) | 
| 64 | 61, 62, 63 | sylc 65 | . . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑈) | 
| 65 |  | dfss2 3968 | . . . . 5
⊢ (suc
𝐺 ⊆ dom 𝑈 ↔ (suc 𝐺 ∩ dom 𝑈) = suc 𝐺) | 
| 66 | 64, 65 | sylib 218 | . . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑈) = suc 𝐺) | 
| 67 | 56, 66 | eqtrid 2788 | . . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑈 ↾ suc 𝐺) = suc 𝐺) | 
| 68 | 55, 67 | eqtr4d 2779 | . 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑆 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺)) | 
| 69 | 55 | eleq2d 2826 | . . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑆 ↾ suc 𝐺) ↔ 𝑎 ∈ suc 𝐺)) | 
| 70 |  | simpl1 1191 | . . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) | 
| 71 |  | simpl2 1192 | . . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝐴 ⊆  No 
∧ 𝐴 ∈
V)) | 
| 72 |  | simpl31 1254 | . . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈 ∈ 𝐴) | 
| 73 | 64 | sselda 3982 | . . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ dom 𝑈) | 
| 74 |  | nodmon 27696 | . . . . . . . . . . . . . 14
⊢ (𝑈 ∈ 
No  → dom 𝑈
∈ On) | 
| 75 | 59, 74 | syl 17 | . . . . . . . . . . . . 13
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑈 ∈ On) | 
| 76 |  | onelon 6408 | . . . . . . . . . . . . 13
⊢ ((dom
𝑈 ∈ On ∧ 𝐺 ∈ dom 𝑈) → 𝐺 ∈ On) | 
| 77 | 75, 62, 76 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ On) | 
| 78 |  | eloni 6393 | . . . . . . . . . . . 12
⊢ (𝐺 ∈ On → Ord 𝐺) | 
| 79 | 77, 78 | syl 17 | . . . . . . . . . . 11
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord 𝐺) | 
| 80 |  | ordsuc 7834 | . . . . . . . . . . 11
⊢ (Ord
𝐺 ↔ Ord suc 𝐺) | 
| 81 | 79, 80 | sylib 218 | . . . . . . . . . 10
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord suc 𝐺) | 
| 82 |  | ordsucss 7839 | . . . . . . . . . 10
⊢ (Ord suc
𝐺 → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺)) | 
| 83 | 81, 82 | syl 17 | . . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺)) | 
| 84 | 83 | imp 406 | . . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝑎 ⊆ suc 𝐺) | 
| 85 |  | simpl33 1256 | . . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) | 
| 86 |  | reseq1 5990 | . . . . . . . . . . 11
⊢ ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎)) | 
| 87 |  | resabs1 6023 | . . . . . . . . . . . 12
⊢ (suc
𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑈 ↾ suc 𝑎)) | 
| 88 |  | resabs1 6023 | . . . . . . . . . . . 12
⊢ (suc
𝑎 ⊆ suc 𝐺 → ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)) | 
| 89 | 87, 88 | eqeq12d 2752 | . . . . . . . . . . 11
⊢ (suc
𝑎 ⊆ suc 𝐺 → (((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) ↔ (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) | 
| 90 | 86, 89 | imbitrid 244 | . . . . . . . . . 10
⊢ (suc
𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) | 
| 91 | 90 | imim2d 57 | . . . . . . . . 9
⊢ (suc
𝑎 ⊆ suc 𝐺 → ((¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) | 
| 92 | 91 | ralimdv 3168 | . . . . . . . 8
⊢ (suc
𝑎 ⊆ suc 𝐺 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) | 
| 93 | 84, 85, 92 | sylc 65 | . . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) | 
| 94 | 2 | nosupfv 27752 | . . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝑎 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) → (𝑆‘𝑎) = (𝑈‘𝑎)) | 
| 95 | 70, 71, 72, 73, 93, 94 | syl113anc 1383 | . . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝑆‘𝑎) = (𝑈‘𝑎)) | 
| 96 |  | simpr 484 | . . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ suc 𝐺) | 
| 97 | 96 | fvresd 6925 | . . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑆 ↾ suc 𝐺)‘𝑎) = (𝑆‘𝑎)) | 
| 98 | 96 | fvresd 6925 | . . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑈 ↾ suc 𝐺)‘𝑎) = (𝑈‘𝑎)) | 
| 99 | 95, 97, 98 | 3eqtr4d 2786 | . . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)) | 
| 100 | 99 | ex 412 | . . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → ((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))) | 
| 101 | 69, 100 | sylbid 240 | . . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑆 ↾ suc 𝐺) → ((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))) | 
| 102 | 101 | ralrimiv 3144 | . 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑎 ∈ dom (𝑆 ↾ suc 𝐺)((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)) | 
| 103 |  | nofun 27695 | . . . 4
⊢ (𝑆 ∈ 
No  → Fun 𝑆) | 
| 104 |  | funres 6607 | . . . 4
⊢ (Fun
𝑆 → Fun (𝑆 ↾ suc 𝐺)) | 
| 105 | 4, 103, 104 | 3syl 18 | . . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑆 ↾ suc 𝐺)) | 
| 106 |  | nofun 27695 | . . . 4
⊢ (𝑈 ∈ 
No  → Fun 𝑈) | 
| 107 |  | funres 6607 | . . . 4
⊢ (Fun
𝑈 → Fun (𝑈 ↾ suc 𝐺)) | 
| 108 | 59, 106, 107 | 3syl 18 | . . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑈 ↾ suc 𝐺)) | 
| 109 |  | eqfunfv 7055 | . . 3
⊢ ((Fun
(𝑆 ↾ suc 𝐺) ∧ Fun (𝑈 ↾ suc 𝐺)) → ((𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑆 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑆 ↾ suc 𝐺)((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))) | 
| 110 | 105, 108,
109 | syl2anc 584 | . 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑆 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑆 ↾ suc 𝐺)((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))) | 
| 111 | 68, 102, 110 | mpbir2and 713 | 1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) |