Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1189 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl3 1184 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: initoeu2lem2 17346 mulmarep1gsum2 21279 tsmsxp 22860 ax5seg 26836 br8d 30477 br8 33243 noinfres 33514 cgrextend 33885 segconeq 33887 trisegint 33905 ifscgr 33921 cgrsub 33922 btwnxfr 33933 seglecgr12im 33987 segletr 33991 exatleN 37006 atbtwn 37048 3dim1 37069 3dim2 37070 2llnjaN 37168 4atlem10b 37207 4atlem11 37211 4atlem12 37214 2lplnj 37222 cdlemb 37396 paddasslem4 37425 pmodlem1 37448 4atex2 37679 trlval3 37789 arglem1N 37792 cdleme0moN 37827 cdleme17b 37889 cdleme20 37926 cdleme21j 37938 cdleme28c 37974 cdleme35h2 38059 cdleme38n 38066 cdlemg6c 38222 cdlemg6 38225 cdlemg7N 38228 cdlemg11a 38239 cdlemg12e 38249 cdlemg16 38259 cdlemg16ALTN 38260 cdlemg16zz 38262 cdlemg20 38287 cdlemg22 38289 cdlemg37 38291 cdlemg31d 38302 cdlemg29 38307 cdlemg33b 38309 cdlemg33 38313 cdlemg39 38318 cdlemg42 38331 cdlemk25-3 38506 |
Copyright terms: Public domain | W3C validator |