MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpl32 Structured version   Visualization version   GIF version

Theorem simpl32 1253
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpl32 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)

Proof of Theorem simpl32
StepHypRef Expression
1 simpl2 1190 . 2 (((𝜑𝜓𝜒) ∧ 𝜂) → 𝜓)
213ad2antl3 1185 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  initoeu2lem2  17646  mulmarep1gsum2  21631  tsmsxp  23214  ax5seg  27209  br8d  30851  br8  33629  noinfres  33852  cgrextend  34237  segconeq  34239  trisegint  34257  ifscgr  34273  cgrsub  34274  btwnxfr  34285  seglecgr12im  34339  segletr  34343  exatleN  37345  atbtwn  37387  3dim1  37408  3dim2  37409  2llnjaN  37507  4atlem10b  37546  4atlem11  37550  4atlem12  37553  2lplnj  37561  cdlemb  37735  paddasslem4  37764  pmodlem1  37787  4atex2  38018  trlval3  38128  arglem1N  38131  cdleme0moN  38166  cdleme17b  38228  cdleme20  38265  cdleme21j  38277  cdleme28c  38313  cdleme35h2  38398  cdleme38n  38405  cdlemg6c  38561  cdlemg6  38564  cdlemg7N  38567  cdlemg11a  38578  cdlemg12e  38588  cdlemg16  38598  cdlemg16ALTN  38599  cdlemg16zz  38601  cdlemg20  38626  cdlemg22  38628  cdlemg37  38630  cdlemg31d  38641  cdlemg29  38646  cdlemg33b  38648  cdlemg33  38652  cdlemg39  38657  cdlemg42  38670  cdlemk25-3  38845
  Copyright terms: Public domain W3C validator