| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: initoeu2lem2 17977 mulmarep1gsum2 22461 tsmsxp 24042 noinfres 27634 ax5seg 28865 br8d 32538 br8 35743 cgrextend 35996 segconeq 35998 trisegint 36016 ifscgr 36032 cgrsub 36033 btwnxfr 36044 seglecgr12im 36098 segletr 36102 exatleN 39398 atbtwn 39440 3dim1 39461 3dim2 39462 2llnjaN 39560 4atlem10b 39599 4atlem11 39603 4atlem12 39606 2lplnj 39614 cdlemb 39788 paddasslem4 39817 pmodlem1 39840 4atex2 40071 trlval3 40181 arglem1N 40184 cdleme0moN 40219 cdleme17b 40281 cdleme20 40318 cdleme21j 40330 cdleme28c 40366 cdleme35h2 40451 cdleme38n 40458 cdlemg6c 40614 cdlemg6 40617 cdlemg7N 40620 cdlemg11a 40631 cdlemg12e 40641 cdlemg16 40651 cdlemg16ALTN 40652 cdlemg16zz 40654 cdlemg20 40679 cdlemg22 40681 cdlemg37 40683 cdlemg31d 40694 cdlemg29 40699 cdlemg33b 40701 cdlemg33 40705 cdlemg39 40710 cdlemg42 40723 cdlemk25-3 40898 |
| Copyright terms: Public domain | W3C validator |