| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: initoeu2lem2 17924 mulmarep1gsum2 22490 tsmsxp 24071 noinfres 27662 ax5seg 28918 br8d 32593 br8 35821 cgrextend 36073 segconeq 36075 trisegint 36093 ifscgr 36109 cgrsub 36110 btwnxfr 36121 seglecgr12im 36175 segletr 36179 exatleN 39524 atbtwn 39566 3dim1 39587 3dim2 39588 2llnjaN 39686 4atlem10b 39725 4atlem11 39729 4atlem12 39732 2lplnj 39740 cdlemb 39914 paddasslem4 39943 pmodlem1 39966 4atex2 40197 trlval3 40307 arglem1N 40310 cdleme0moN 40345 cdleme17b 40407 cdleme20 40444 cdleme21j 40456 cdleme28c 40492 cdleme35h2 40577 cdleme38n 40584 cdlemg6c 40740 cdlemg6 40743 cdlemg7N 40746 cdlemg11a 40757 cdlemg12e 40767 cdlemg16 40777 cdlemg16ALTN 40778 cdlemg16zz 40780 cdlemg20 40805 cdlemg22 40807 cdlemg37 40809 cdlemg31d 40820 cdlemg29 40825 cdlemg33b 40827 cdlemg33 40831 cdlemg39 40836 cdlemg42 40849 cdlemk25-3 41024 |
| Copyright terms: Public domain | W3C validator |