| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: initoeu2lem2 18026 mulmarep1gsum2 22510 tsmsxp 24091 noinfres 27684 ax5seg 28863 br8d 32536 br8 35719 cgrextend 35972 segconeq 35974 trisegint 35992 ifscgr 36008 cgrsub 36009 btwnxfr 36020 seglecgr12im 36074 segletr 36078 exatleN 39369 atbtwn 39411 3dim1 39432 3dim2 39433 2llnjaN 39531 4atlem10b 39570 4atlem11 39574 4atlem12 39577 2lplnj 39585 cdlemb 39759 paddasslem4 39788 pmodlem1 39811 4atex2 40042 trlval3 40152 arglem1N 40155 cdleme0moN 40190 cdleme17b 40252 cdleme20 40289 cdleme21j 40301 cdleme28c 40337 cdleme35h2 40422 cdleme38n 40429 cdlemg6c 40585 cdlemg6 40588 cdlemg7N 40591 cdlemg11a 40602 cdlemg12e 40612 cdlemg16 40622 cdlemg16ALTN 40623 cdlemg16zz 40625 cdlemg20 40650 cdlemg22 40652 cdlemg37 40654 cdlemg31d 40665 cdlemg29 40670 cdlemg33b 40672 cdlemg33 40676 cdlemg39 40681 cdlemg42 40694 cdlemk25-3 40869 |
| Copyright terms: Public domain | W3C validator |