| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: initoeu2lem2 17940 mulmarep1gsum2 22477 tsmsxp 24058 noinfres 27650 ax5seg 28901 br8d 32571 br8 35728 cgrextend 35981 segconeq 35983 trisegint 36001 ifscgr 36017 cgrsub 36018 btwnxfr 36029 seglecgr12im 36083 segletr 36087 exatleN 39383 atbtwn 39425 3dim1 39446 3dim2 39447 2llnjaN 39545 4atlem10b 39584 4atlem11 39588 4atlem12 39591 2lplnj 39599 cdlemb 39773 paddasslem4 39802 pmodlem1 39825 4atex2 40056 trlval3 40166 arglem1N 40169 cdleme0moN 40204 cdleme17b 40266 cdleme20 40303 cdleme21j 40315 cdleme28c 40351 cdleme35h2 40436 cdleme38n 40443 cdlemg6c 40599 cdlemg6 40602 cdlemg7N 40605 cdlemg11a 40616 cdlemg12e 40626 cdlemg16 40636 cdlemg16ALTN 40637 cdlemg16zz 40639 cdlemg20 40664 cdlemg22 40666 cdlemg37 40668 cdlemg31d 40679 cdlemg29 40684 cdlemg33b 40686 cdlemg33 40690 cdlemg39 40695 cdlemg42 40708 cdlemk25-3 40883 |
| Copyright terms: Public domain | W3C validator |