| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: initoeu2lem2 17984 mulmarep1gsum2 22468 tsmsxp 24049 noinfres 27641 ax5seg 28872 br8d 32545 br8 35750 cgrextend 36003 segconeq 36005 trisegint 36023 ifscgr 36039 cgrsub 36040 btwnxfr 36051 seglecgr12im 36105 segletr 36109 exatleN 39405 atbtwn 39447 3dim1 39468 3dim2 39469 2llnjaN 39567 4atlem10b 39606 4atlem11 39610 4atlem12 39613 2lplnj 39621 cdlemb 39795 paddasslem4 39824 pmodlem1 39847 4atex2 40078 trlval3 40188 arglem1N 40191 cdleme0moN 40226 cdleme17b 40288 cdleme20 40325 cdleme21j 40337 cdleme28c 40373 cdleme35h2 40458 cdleme38n 40465 cdlemg6c 40621 cdlemg6 40624 cdlemg7N 40627 cdlemg11a 40638 cdlemg12e 40648 cdlemg16 40658 cdlemg16ALTN 40659 cdlemg16zz 40661 cdlemg20 40686 cdlemg22 40688 cdlemg37 40690 cdlemg31d 40701 cdlemg29 40706 cdlemg33b 40708 cdlemg33 40712 cdlemg39 40717 cdlemg42 40730 cdlemk25-3 40905 |
| Copyright terms: Public domain | W3C validator |