![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl3 1187 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: initoeu2lem2 18082 mulmarep1gsum2 22601 tsmsxp 24184 noinfres 27785 ax5seg 28971 br8d 32632 br8 35718 cgrextend 35972 segconeq 35974 trisegint 35992 ifscgr 36008 cgrsub 36009 btwnxfr 36020 seglecgr12im 36074 segletr 36078 exatleN 39361 atbtwn 39403 3dim1 39424 3dim2 39425 2llnjaN 39523 4atlem10b 39562 4atlem11 39566 4atlem12 39569 2lplnj 39577 cdlemb 39751 paddasslem4 39780 pmodlem1 39803 4atex2 40034 trlval3 40144 arglem1N 40147 cdleme0moN 40182 cdleme17b 40244 cdleme20 40281 cdleme21j 40293 cdleme28c 40329 cdleme35h2 40414 cdleme38n 40421 cdlemg6c 40577 cdlemg6 40580 cdlemg7N 40583 cdlemg11a 40594 cdlemg12e 40604 cdlemg16 40614 cdlemg16ALTN 40615 cdlemg16zz 40617 cdlemg20 40642 cdlemg22 40644 cdlemg37 40646 cdlemg31d 40657 cdlemg29 40662 cdlemg33b 40664 cdlemg33 40668 cdlemg39 40673 cdlemg42 40686 cdlemk25-3 40861 |
Copyright terms: Public domain | W3C validator |