Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl3 1185 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: initoeu2lem2 17646 mulmarep1gsum2 21631 tsmsxp 23214 ax5seg 27209 br8d 30851 br8 33629 noinfres 33852 cgrextend 34237 segconeq 34239 trisegint 34257 ifscgr 34273 cgrsub 34274 btwnxfr 34285 seglecgr12im 34339 segletr 34343 exatleN 37345 atbtwn 37387 3dim1 37408 3dim2 37409 2llnjaN 37507 4atlem10b 37546 4atlem11 37550 4atlem12 37553 2lplnj 37561 cdlemb 37735 paddasslem4 37764 pmodlem1 37787 4atex2 38018 trlval3 38128 arglem1N 38131 cdleme0moN 38166 cdleme17b 38228 cdleme20 38265 cdleme21j 38277 cdleme28c 38313 cdleme35h2 38398 cdleme38n 38405 cdlemg6c 38561 cdlemg6 38564 cdlemg7N 38567 cdlemg11a 38578 cdlemg12e 38588 cdlemg16 38598 cdlemg16ALTN 38599 cdlemg16zz 38601 cdlemg20 38626 cdlemg22 38628 cdlemg37 38630 cdlemg31d 38641 cdlemg29 38646 cdlemg33b 38648 cdlemg33 38652 cdlemg39 38657 cdlemg42 38670 cdlemk25-3 38845 |
Copyright terms: Public domain | W3C validator |