![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl3 1185 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: initoeu2lem2 17969 mulmarep1gsum2 22296 tsmsxp 23879 noinfres 27461 ax5seg 28463 br8d 32106 br8 35030 cgrextend 35284 segconeq 35286 trisegint 35304 ifscgr 35320 cgrsub 35321 btwnxfr 35332 seglecgr12im 35386 segletr 35390 exatleN 38578 atbtwn 38620 3dim1 38641 3dim2 38642 2llnjaN 38740 4atlem10b 38779 4atlem11 38783 4atlem12 38786 2lplnj 38794 cdlemb 38968 paddasslem4 38997 pmodlem1 39020 4atex2 39251 trlval3 39361 arglem1N 39364 cdleme0moN 39399 cdleme17b 39461 cdleme20 39498 cdleme21j 39510 cdleme28c 39546 cdleme35h2 39631 cdleme38n 39638 cdlemg6c 39794 cdlemg6 39797 cdlemg7N 39800 cdlemg11a 39811 cdlemg12e 39821 cdlemg16 39831 cdlemg16ALTN 39832 cdlemg16zz 39834 cdlemg20 39859 cdlemg22 39861 cdlemg37 39863 cdlemg31d 39874 cdlemg29 39879 cdlemg33b 39881 cdlemg33 39885 cdlemg39 39890 cdlemg42 39903 cdlemk25-3 40078 |
Copyright terms: Public domain | W3C validator |