![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl3 1186 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: initoeu2lem2 18068 mulmarep1gsum2 22595 tsmsxp 24178 noinfres 27781 ax5seg 28967 br8d 32629 br8 35735 cgrextend 35989 segconeq 35991 trisegint 36009 ifscgr 36025 cgrsub 36026 btwnxfr 36037 seglecgr12im 36091 segletr 36095 exatleN 39386 atbtwn 39428 3dim1 39449 3dim2 39450 2llnjaN 39548 4atlem10b 39587 4atlem11 39591 4atlem12 39594 2lplnj 39602 cdlemb 39776 paddasslem4 39805 pmodlem1 39828 4atex2 40059 trlval3 40169 arglem1N 40172 cdleme0moN 40207 cdleme17b 40269 cdleme20 40306 cdleme21j 40318 cdleme28c 40354 cdleme35h2 40439 cdleme38n 40446 cdlemg6c 40602 cdlemg6 40605 cdlemg7N 40608 cdlemg11a 40619 cdlemg12e 40629 cdlemg16 40639 cdlemg16ALTN 40640 cdlemg16zz 40642 cdlemg20 40667 cdlemg22 40669 cdlemg37 40671 cdlemg31d 40682 cdlemg29 40687 cdlemg33b 40689 cdlemg33 40693 cdlemg39 40698 cdlemg42 40711 cdlemk25-3 40886 |
Copyright terms: Public domain | W3C validator |