MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpl32 Structured version   Visualization version   GIF version

Theorem simpl32 1256
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpl32 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)

Proof of Theorem simpl32
StepHypRef Expression
1 simpl2 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜂) → 𝜓)
213ad2antl3 1188 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  initoeu2lem2  17977  mulmarep1gsum2  22461  tsmsxp  24042  noinfres  27634  ax5seg  28865  br8d  32538  br8  35743  cgrextend  35996  segconeq  35998  trisegint  36016  ifscgr  36032  cgrsub  36033  btwnxfr  36044  seglecgr12im  36098  segletr  36102  exatleN  39398  atbtwn  39440  3dim1  39461  3dim2  39462  2llnjaN  39560  4atlem10b  39599  4atlem11  39603  4atlem12  39606  2lplnj  39614  cdlemb  39788  paddasslem4  39817  pmodlem1  39840  4atex2  40071  trlval3  40181  arglem1N  40184  cdleme0moN  40219  cdleme17b  40281  cdleme20  40318  cdleme21j  40330  cdleme28c  40366  cdleme35h2  40451  cdleme38n  40458  cdlemg6c  40614  cdlemg6  40617  cdlemg7N  40620  cdlemg11a  40631  cdlemg12e  40641  cdlemg16  40651  cdlemg16ALTN  40652  cdlemg16zz  40654  cdlemg20  40679  cdlemg22  40681  cdlemg37  40683  cdlemg31d  40694  cdlemg29  40699  cdlemg33b  40701  cdlemg33  40705  cdlemg39  40710  cdlemg42  40723  cdlemk25-3  40898
  Copyright terms: Public domain W3C validator