| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: initoeu2lem2 17922 mulmarep1gsum2 22490 tsmsxp 24071 noinfres 27662 ax5seg 28917 br8d 32589 br8 35798 cgrextend 36048 segconeq 36050 trisegint 36068 ifscgr 36084 cgrsub 36085 btwnxfr 36096 seglecgr12im 36150 segletr 36154 exatleN 39449 atbtwn 39491 3dim1 39512 3dim2 39513 2llnjaN 39611 4atlem10b 39650 4atlem11 39654 4atlem12 39657 2lplnj 39665 cdlemb 39839 paddasslem4 39868 pmodlem1 39891 4atex2 40122 trlval3 40232 arglem1N 40235 cdleme0moN 40270 cdleme17b 40332 cdleme20 40369 cdleme21j 40381 cdleme28c 40417 cdleme35h2 40502 cdleme38n 40509 cdlemg6c 40665 cdlemg6 40668 cdlemg7N 40671 cdlemg11a 40682 cdlemg12e 40692 cdlemg16 40702 cdlemg16ALTN 40703 cdlemg16zz 40705 cdlemg20 40730 cdlemg22 40732 cdlemg37 40734 cdlemg31d 40745 cdlemg29 40750 cdlemg33b 40752 cdlemg33 40756 cdlemg39 40761 cdlemg42 40774 cdlemk25-3 40949 |
| Copyright terms: Public domain | W3C validator |