Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl3 1186 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: initoeu2lem2 17730 mulmarep1gsum2 21723 tsmsxp 23306 ax5seg 27306 br8d 30950 br8 33723 noinfres 33925 cgrextend 34310 segconeq 34312 trisegint 34330 ifscgr 34346 cgrsub 34347 btwnxfr 34358 seglecgr12im 34412 segletr 34416 exatleN 37418 atbtwn 37460 3dim1 37481 3dim2 37482 2llnjaN 37580 4atlem10b 37619 4atlem11 37623 4atlem12 37626 2lplnj 37634 cdlemb 37808 paddasslem4 37837 pmodlem1 37860 4atex2 38091 trlval3 38201 arglem1N 38204 cdleme0moN 38239 cdleme17b 38301 cdleme20 38338 cdleme21j 38350 cdleme28c 38386 cdleme35h2 38471 cdleme38n 38478 cdlemg6c 38634 cdlemg6 38637 cdlemg7N 38640 cdlemg11a 38651 cdlemg12e 38661 cdlemg16 38671 cdlemg16ALTN 38672 cdlemg16zz 38674 cdlemg20 38699 cdlemg22 38701 cdlemg37 38703 cdlemg31d 38714 cdlemg29 38719 cdlemg33b 38721 cdlemg33 38725 cdlemg39 38730 cdlemg42 38743 cdlemk25-3 38918 |
Copyright terms: Public domain | W3C validator |