Proof of Theorem cdlemg6
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl2l 1224 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simpl2r 1225 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
4 | | simpl31 1252 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → 𝐹 ∈ 𝑇) |
5 | | simpl32 1253 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → 𝐺 ∈ 𝑇) |
6 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) |
7 | | simpl33 1254 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = 𝑃) |
8 | | cdlemg6.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
9 | | cdlemg6.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
10 | | cdlemg6.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
11 | | cdlemg6.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
12 | | eqid 2739 |
. . . 4
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
13 | | eqid 2739 |
. . . 4
⊢
(join‘𝐾) =
(join‘𝐾) |
14 | | eqid 2739 |
. . . 4
⊢
(((trL‘𝐾)‘𝑊)‘𝐺) = (((trL‘𝐾)‘𝑊)‘𝐺) |
15 | 8, 9, 10, 11, 12, 13, 14 | cdlemg6e 38615 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺)) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) |
16 | 1, 2, 3, 4, 5, 6, 7, 15 | syl133anc 1391 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹‘(𝐺‘𝑄)) = 𝑄) |
17 | | simpl1 1189 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
18 | | simpl2l 1224 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
19 | | simpl2r 1225 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
20 | | simpl31 1252 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → 𝐹 ∈ 𝑇) |
21 | | simpl32 1253 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → 𝐺 ∈ 𝑇) |
22 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) |
23 | | simpl33 1254 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = 𝑃) |
24 | 8, 9, 10, 11, 12, 13, 14 | cdlemg4 38610 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺)) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) |
25 | 17, 18, 19, 20, 21, 22, 23, 24 | syl133anc 1391 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) ∧ ¬ 𝑄 ≤ (𝑃(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹‘(𝐺‘𝑄)) = 𝑄) |
26 | 16, 25 | pm2.61dan 809 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) |