![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snmlfval | Structured version Visualization version GIF version |
Description: The function 𝐹 from snmlval 35301 maps 𝑁 to the relative density of 𝐵 in the first 𝑁 digits of the digit string of 𝐴 in base 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
snmlff.f | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) |
Ref | Expression |
---|---|
snmlfval | ⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7458 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | rabeqdv 3459 | . . . 4 ⊢ (𝑛 = 𝑁 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} = {𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) |
3 | 2 | fveq2d 6926 | . . 3 ⊢ (𝑛 = 𝑁 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) = (♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵})) |
4 | id 22 | . . 3 ⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) | |
5 | 3, 4 | oveq12d 7468 | . 2 ⊢ (𝑛 = 𝑁 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑁)) |
6 | snmlff.f | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) | |
7 | ovex 7483 | . 2 ⊢ ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑁) ∈ V | |
8 | 5, 6, 7 | fvmpt 7031 | 1 ⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ↦ cmpt 5249 ‘cfv 6575 (class class class)co 7450 1c1 11187 · cmul 11191 / cdiv 11949 ℕcn 12295 ...cfz 13569 ⌊cfl 13843 mod cmo 13922 ↑cexp 14114 ♯chash 14381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |