Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlfval Structured version   Visualization version   GIF version

Theorem snmlfval 35317
Description: The function 𝐹 from snmlval 35318 maps 𝑁 to the relative density of 𝐵 in the first 𝑁 digits of the digit string of 𝐴 in base 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlfval (𝑁 ∈ ℕ → (𝐹𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛,𝑁   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)   𝐹(𝑘,𝑛)

Proof of Theorem snmlfval
StepHypRef Expression
1 oveq2 7397 . . . . 5 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21rabeqdv 3424 . . . 4 (𝑛 = 𝑁 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} = {𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})
32fveq2d 6864 . . 3 (𝑛 = 𝑁 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) = (♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
4 id 22 . . 3 (𝑛 = 𝑁𝑛 = 𝑁)
53, 4oveq12d 7407 . 2 (𝑛 = 𝑁 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁))
6 snmlff.f . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
7 ovex 7422 . 2 ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁) ∈ V
85, 6, 7fvmpt 6970 1 (𝑁 ∈ ℕ → (𝐹𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  cmpt 5190  cfv 6513  (class class class)co 7389  1c1 11075   · cmul 11079   / cdiv 11841  cn 12187  ...cfz 13474  cfl 13758   mod cmo 13837  cexp 14032  chash 14301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator