Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlfval Structured version   Visualization version   GIF version

Theorem snmlfval 35294
Description: The function 𝐹 from snmlval 35295 maps 𝑁 to the relative density of 𝐵 in the first 𝑁 digits of the digit string of 𝐴 in base 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlfval (𝑁 ∈ ℕ → (𝐹𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛,𝑁   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)   𝐹(𝑘,𝑛)

Proof of Theorem snmlfval
StepHypRef Expression
1 oveq2 7421 . . . . 5 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21rabeqdv 3435 . . . 4 (𝑛 = 𝑁 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} = {𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})
32fveq2d 6890 . . 3 (𝑛 = 𝑁 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) = (♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
4 id 22 . . 3 (𝑛 = 𝑁𝑛 = 𝑁)
53, 4oveq12d 7431 . 2 (𝑛 = 𝑁 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁))
6 snmlff.f . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
7 ovex 7446 . 2 ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁) ∈ V
85, 6, 7fvmpt 6996 1 (𝑁 ∈ ℕ → (𝐹𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3419  cmpt 5205  cfv 6541  (class class class)co 7413  1c1 11138   · cmul 11142   / cdiv 11902  cn 12248  ...cfz 13529  cfl 13812   mod cmo 13891  cexp 14084  chash 14351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator