Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Structured version   Visualization version   GIF version

Theorem snmlff 33191
Description: The function 𝐹 from snmlval 33193 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlff 𝐹:ℕ⟶(0[,]1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)   𝐹(𝑘,𝑛)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
2 fzfid 13621 . . . . . . 7 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
3 ssrab2 4009 . . . . . . 7 {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)
4 ssfi 8918 . . . . . . 7 (((1...𝑛) ∈ Fin ∧ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
52, 3, 4sylancl 585 . . . . . 6 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
6 hashcl 13999 . . . . . 6 ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
87nn0red 12224 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ)
9 nndivre 11944 . . . 4 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
108, 9mpancom 684 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
117nn0ge0d 12226 . . . 4 (𝑛 ∈ ℕ → 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
12 nnre 11910 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
13 nngt0 11934 . . . 4 (𝑛 ∈ ℕ → 0 < 𝑛)
14 divge0 11774 . . . 4 ((((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
158, 11, 12, 13, 14syl22anc 835 . . 3 (𝑛 ∈ ℕ → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
16 ssdomg 8741 . . . . . . . 8 ((1...𝑛) ∈ Fin → ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
172, 3, 16mpisyl 21 . . . . . . 7 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))
18 hashdom 14022 . . . . . . . 8 (({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
195, 2, 18syl2anc 583 . . . . . . 7 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
2017, 19mpbird 256 . . . . . 6 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)))
21 nnnn0 12170 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
22 hashfz1 13988 . . . . . . 7 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
2321, 22syl 17 . . . . . 6 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
2420, 23breqtrd 5096 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ 𝑛)
25 nncn 11911 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2625mulid1d 10923 . . . . 5 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
2724, 26breqtrrd 5098 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1))
28 1red 10907 . . . . 5 (𝑛 ∈ ℕ → 1 ∈ ℝ)
29 ledivmul 11781 . . . . 5 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
308, 28, 12, 13, 29syl112anc 1372 . . . 4 (𝑛 ∈ ℕ → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
3127, 30mpbird 256 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1)
32 elicc01 13127 . . 3 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1) ↔ (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ ∧ 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∧ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1))
3310, 15, 31, 32syl3anbrc 1341 . 2 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1))
341, 33fmpti 6968 1 𝐹:ℕ⟶(0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cdom 8689  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  0cn0 12163  [,]cicc 13011  ...cfz 13168  cfl 13438   mod cmo 13517  cexp 13710  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-icc 13015  df-fz 13169  df-hash 13973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator