Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Structured version   Visualization version   GIF version

Theorem snmlff 32158
Description: The function 𝐹 from snmlval 32160 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlff 𝐹:ℕ⟶(0[,]1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)   𝐹(𝑘,𝑛)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
2 fzfid 13156 . . . . . . 7 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
3 ssrab2 3947 . . . . . . 7 {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)
4 ssfi 8533 . . . . . . 7 (((1...𝑛) ∈ Fin ∧ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
52, 3, 4sylancl 577 . . . . . 6 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
6 hashcl 13532 . . . . . 6 ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
87nn0red 11768 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ)
9 nndivre 11481 . . . 4 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
108, 9mpancom 675 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
117nn0ge0d 11770 . . . 4 (𝑛 ∈ ℕ → 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
12 nnre 11447 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
13 nngt0 11471 . . . 4 (𝑛 ∈ ℕ → 0 < 𝑛)
14 divge0 11310 . . . 4 ((((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
158, 11, 12, 13, 14syl22anc 826 . . 3 (𝑛 ∈ ℕ → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
16 ssdomg 8352 . . . . . . . 8 ((1...𝑛) ∈ Fin → ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
172, 3, 16mpisyl 21 . . . . . . 7 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))
18 hashdom 13553 . . . . . . . 8 (({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
195, 2, 18syl2anc 576 . . . . . . 7 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
2017, 19mpbird 249 . . . . . 6 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)))
21 nnnn0 11715 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
22 hashfz1 13521 . . . . . . 7 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
2321, 22syl 17 . . . . . 6 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
2420, 23breqtrd 4955 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ 𝑛)
25 nncn 11448 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2625mulid1d 10457 . . . . 5 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
2724, 26breqtrrd 4957 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1))
28 1red 10440 . . . . 5 (𝑛 ∈ ℕ → 1 ∈ ℝ)
29 ledivmul 11317 . . . . 5 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
308, 28, 12, 13, 29syl112anc 1354 . . . 4 (𝑛 ∈ ℕ → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
3127, 30mpbird 249 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1)
32 elicc01 12670 . . 3 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1) ↔ (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ ∧ 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∧ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1))
3310, 15, 31, 32syl3anbrc 1323 . 2 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1))
341, 33fmpti 6699 1 𝐹:ℕ⟶(0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1507  wcel 2050  {crab 3093  wss 3830   class class class wbr 4929  cmpt 5008  wf 6184  cfv 6188  (class class class)co 6976  cdom 8304  Fincfn 8306  cr 10334  0cc0 10335  1c1 10336   · cmul 10340   < clt 10474  cle 10475   / cdiv 11098  cn 11439  0cn0 11707  [,]cicc 12557  ...cfz 12708  cfl 12975   mod cmo 13052  cexp 13244  chash 13505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-icc 12561  df-fz 12709  df-hash 13506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator