Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Structured version   Visualization version   GIF version

Theorem snmlff 35351
Description: The function 𝐹 from snmlval 35353 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlff 𝐹:ℕ⟶(0[,]1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)   𝐹(𝑘,𝑛)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
2 fzfid 13991 . . . . . . 7 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
3 ssrab2 4055 . . . . . . 7 {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)
4 ssfi 9187 . . . . . . 7 (((1...𝑛) ∈ Fin ∧ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
52, 3, 4sylancl 586 . . . . . 6 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
6 hashcl 14374 . . . . . 6 ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
87nn0red 12563 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ)
9 nndivre 12281 . . . 4 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
108, 9mpancom 688 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
117nn0ge0d 12565 . . . 4 (𝑛 ∈ ℕ → 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
12 nnre 12247 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
13 nngt0 12271 . . . 4 (𝑛 ∈ ℕ → 0 < 𝑛)
14 divge0 12111 . . . 4 ((((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
158, 11, 12, 13, 14syl22anc 838 . . 3 (𝑛 ∈ ℕ → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
16 ssdomg 9014 . . . . . . . 8 ((1...𝑛) ∈ Fin → ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
172, 3, 16mpisyl 21 . . . . . . 7 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))
18 hashdom 14397 . . . . . . . 8 (({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
195, 2, 18syl2anc 584 . . . . . . 7 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
2017, 19mpbird 257 . . . . . 6 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)))
21 nnnn0 12508 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
22 hashfz1 14364 . . . . . . 7 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
2321, 22syl 17 . . . . . 6 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
2420, 23breqtrd 5145 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ 𝑛)
25 nncn 12248 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2625mulridd 11252 . . . . 5 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
2724, 26breqtrrd 5147 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1))
28 1red 11236 . . . . 5 (𝑛 ∈ ℕ → 1 ∈ ℝ)
29 ledivmul 12118 . . . . 5 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
308, 28, 12, 13, 29syl112anc 1376 . . . 4 (𝑛 ∈ ℕ → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
3127, 30mpbird 257 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1)
32 elicc01 13483 . . 3 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1) ↔ (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ ∧ 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∧ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1))
3310, 15, 31, 32syl3anbrc 1344 . 2 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1))
341, 33fmpti 7102 1 𝐹:ℕ⟶(0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  {crab 3415  wss 3926   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  cdom 8957  Fincfn 8959  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270   / cdiv 11894  cn 12240  0cn0 12501  [,]cicc 13365  ...cfz 13524  cfl 13807   mod cmo 13886  cexp 14079  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-icc 13369  df-fz 13525  df-hash 14349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator