Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlval Structured version   Visualization version   GIF version

Theorem snmlval 35299
Description: The property "𝐴 is simply normal in base 𝑅". A number is simply normal if each digit 0 ≤ 𝑏 < 𝑅 occurs in the base- 𝑅 digit string of 𝐴 with frequency 1 / 𝑅 (which is consistent with the expectation in an infinite random string of numbers selected from 0...𝑅 − 1). (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snml.s 𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})
Assertion
Ref Expression
snmlval (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
Distinct variable groups:   𝑘,𝑏,𝑛,𝑥,𝐴   𝑟,𝑏,𝑅,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑟)   𝑆(𝑥,𝑘,𝑛,𝑟,𝑏)

Proof of Theorem snmlval
StepHypRef Expression
1 oveq1 7455 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑟 − 1) = (𝑅 − 1))
21oveq2d 7464 . . . . . . . 8 (𝑟 = 𝑅 → (0...(𝑟 − 1)) = (0...(𝑅 − 1)))
3 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → (𝑟𝑘) = (𝑅𝑘))
43oveq2d 7464 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → (𝑥 · (𝑟𝑘)) = (𝑥 · (𝑅𝑘)))
5 id 22 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅𝑟 = 𝑅)
64, 5oveq12d 7466 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((𝑥 · (𝑟𝑘)) mod 𝑟) = ((𝑥 · (𝑅𝑘)) mod 𝑅))
76fveqeq2d 6928 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → ((⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏 ↔ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏))
87rabbidv 3451 . . . . . . . . . . . 12 (𝑟 = 𝑅 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏})
98fveq2d 6924 . . . . . . . . . . 11 (𝑟 = 𝑅 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) = (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}))
109oveq1d 7463 . . . . . . . . . 10 (𝑟 = 𝑅 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))
1110mpteq2dv 5268 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)))
12 oveq2 7456 . . . . . . . . 9 (𝑟 = 𝑅 → (1 / 𝑟) = (1 / 𝑅))
1311, 12breq12d 5179 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
142, 13raleqbidv 3354 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
1514rabbidv 3451 . . . . . 6 (𝑟 = 𝑅 → {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)} = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)})
16 snml.s . . . . . 6 𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})
17 reex 11275 . . . . . . 7 ℝ ∈ V
1817rabex 5357 . . . . . 6 {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ∈ V
1915, 16, 18fvmpt 7029 . . . . 5 (𝑅 ∈ (ℤ‘2) → (𝑆𝑅) = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)})
2019eleq2d 2830 . . . 4 (𝑅 ∈ (ℤ‘2) → (𝐴 ∈ (𝑆𝑅) ↔ 𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)}))
21 oveq1 7455 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 · (𝑅𝑘)) = (𝐴 · (𝑅𝑘)))
2221fvoveq1d 7470 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)))
2322eqeq1d 2742 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏 ↔ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏))
2423rabbidv 3451 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏})
2524fveq2d 6924 . . . . . . . . 9 (𝑥 = 𝐴 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) = (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}))
2625oveq1d 7463 . . . . . . . 8 (𝑥 = 𝐴 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))
2726mpteq2dv 5268 . . . . . . 7 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)))
2827breq1d 5176 . . . . . 6 (𝑥 = 𝐴 → ((𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
2928ralbidv 3184 . . . . 5 (𝑥 = 𝐴 → (∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
3029elrab 3708 . . . 4 (𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
3120, 30bitrdi 287 . . 3 (𝑅 ∈ (ℤ‘2) → (𝐴 ∈ (𝑆𝑅) ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))))
3231pm5.32i 574 . 2 ((𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ (𝑆𝑅)) ↔ (𝑅 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))))
3316dmmptss 6272 . . . 4 dom 𝑆 ⊆ (ℤ‘2)
34 elfvdm 6957 . . . 4 (𝐴 ∈ (𝑆𝑅) → 𝑅 ∈ dom 𝑆)
3533, 34sselid 4006 . . 3 (𝐴 ∈ (𝑆𝑅) → 𝑅 ∈ (ℤ‘2))
3635pm4.71ri 560 . 2 (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ (𝑆𝑅)))
37 3anass 1095 . 2 ((𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)) ↔ (𝑅 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))))
3832, 36, 373bitr4i 303 1 (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cuz 12903  ...cfz 13567  cfl 13841   mod cmo 13920  cexp 14112  chash 14379  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by:  snmlflim  35300
  Copyright terms: Public domain W3C validator