Proof of Theorem snmlval
Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑟 − 1) = (𝑅 − 1)) |
2 | 1 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (0...(𝑟 − 1)) = (0...(𝑅 − 1))) |
3 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → (𝑟↑𝑘) = (𝑅↑𝑘)) |
4 | 3 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → (𝑥 · (𝑟↑𝑘)) = (𝑥 · (𝑅↑𝑘))) |
5 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) |
6 | 4, 5 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → ((𝑥 · (𝑟↑𝑘)) mod 𝑟) = ((𝑥 · (𝑅↑𝑘)) mod 𝑅)) |
7 | 6 | fveqeq2d 6764 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → ((⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏 ↔ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏)) |
8 | 7 | rabbidv 3404 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) |
9 | 8 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) = (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏})) |
10 | 9 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) |
11 | 10 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))) |
12 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (1 / 𝑟) = (1 / 𝑅)) |
13 | 11, 12 | breq12d 5083 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ (𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
14 | 2, 13 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
15 | 14 | rabbidv 3404 |
. . . . . 6
⊢ (𝑟 = 𝑅 → {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)} = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)}) |
16 | | snml.s |
. . . . . 6
⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2)
↦ {𝑥 ∈ ℝ
∣ ∀𝑏 ∈
(0...(𝑟 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) |
17 | | reex 10893 |
. . . . . . 7
⊢ ℝ
∈ V |
18 | 17 | rabex 5251 |
. . . . . 6
⊢ {𝑥 ∈ ℝ ∣
∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ∈ V |
19 | 15, 16, 18 | fvmpt 6857 |
. . . . 5
⊢ (𝑅 ∈
(ℤ≥‘2) → (𝑆‘𝑅) = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)}) |
20 | 19 | eleq2d 2824 |
. . . 4
⊢ (𝑅 ∈
(ℤ≥‘2) → (𝐴 ∈ (𝑆‘𝑅) ↔ 𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)})) |
21 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (𝑥 · (𝑅↑𝑘)) = (𝐴 · (𝑅↑𝑘))) |
22 | 21 | fvoveq1d 7277 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅))) |
23 | 22 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏 ↔ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏)) |
24 | 23 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) |
25 | 24 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) = (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏})) |
26 | 25 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) |
27 | 26 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))) |
28 | 27 | breq1d 5080 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ (𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
29 | 28 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 = 𝐴 → (∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
30 | 29 | elrab 3617 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
31 | 20, 30 | bitrdi 286 |
. . 3
⊢ (𝑅 ∈
(ℤ≥‘2) → (𝐴 ∈ (𝑆‘𝑅) ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))) |
32 | 31 | pm5.32i 574 |
. 2
⊢ ((𝑅 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ (𝑆‘𝑅)) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ (𝐴 ∈ ℝ
∧ ∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))) |
33 | 16 | dmmptss 6133 |
. . . 4
⊢ dom 𝑆 ⊆
(ℤ≥‘2) |
34 | | elfvdm 6788 |
. . . 4
⊢ (𝐴 ∈ (𝑆‘𝑅) → 𝑅 ∈ dom 𝑆) |
35 | 33, 34 | sselid 3915 |
. . 3
⊢ (𝐴 ∈ (𝑆‘𝑅) → 𝑅 ∈
(ℤ≥‘2)) |
36 | 35 | pm4.71ri 560 |
. 2
⊢ (𝐴 ∈ (𝑆‘𝑅) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ 𝐴 ∈ (𝑆‘𝑅))) |
37 | | 3anass 1093 |
. 2
⊢ ((𝑅 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ (𝐴 ∈ ℝ
∧ ∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))) |
38 | 32, 36, 37 | 3bitr4i 302 |
1
⊢ (𝐴 ∈ (𝑆‘𝑅) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ 𝐴 ∈ ℝ
∧ ∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((♯‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |