| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bdaybndbday | Structured version Visualization version GIF version | ||
| Description: Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.) |
| Ref | Expression |
|---|---|
| bdaybndbday | ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdaybndex 43413 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) | |
| 2 | bdayval 27593 | . . 3 ⊢ ((𝐵 × {𝐶}) ∈ No → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶})) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶})) |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐶 ∈ {1o, 2o}) | |
| 5 | snnzg 4734 | . . 3 ⊢ (𝐶 ∈ {1o, 2o} → {𝐶} ≠ ∅) | |
| 6 | dmxp 5882 | . . 3 ⊢ ({𝐶} ≠ ∅ → dom (𝐵 × {𝐶}) = 𝐵) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → dom (𝐵 × {𝐶}) = 𝐵) |
| 8 | simp2 1137 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐵 = ( bday ‘𝐴)) | |
| 9 | 3, 7, 8 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 {csn 4585 {cpr 4587 × cxp 5629 dom cdm 5631 ‘cfv 6499 1oc1o 8404 2oc2o 8405 No csur 27584 bday cbday 27586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-no 27587 df-bday 27589 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |