Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdaybndbday Structured version   Visualization version   GIF version

Theorem bdaybndbday 43423
Description: Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.)
Assertion
Ref Expression
bdaybndbday ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday 𝐴))

Proof of Theorem bdaybndbday
StepHypRef Expression
1 bdaybndex 43422 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
2 bdayval 27617 . . 3 ((𝐵 × {𝐶}) ∈ No → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶}))
31, 2syl 17 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶}))
4 simp3 1138 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐶 ∈ {1o, 2o})
5 snnzg 4755 . . 3 (𝐶 ∈ {1o, 2o} → {𝐶} ≠ ∅)
6 dmxp 5913 . . 3 ({𝐶} ≠ ∅ → dom (𝐵 × {𝐶}) = 𝐵)
74, 5, 63syl 18 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → dom (𝐵 × {𝐶}) = 𝐵)
8 simp2 1137 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐵 = ( bday 𝐴))
93, 7, 83eqtrd 2775 1 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2933  c0 4313  {csn 4606  {cpr 4608   × cxp 5657  dom cdm 5659  cfv 6536  1oc1o 8478  2oc2o 8479   No csur 27608   bday cbday 27610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-no 27611  df-bday 27613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator