Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdaybndbday Structured version   Visualization version   GIF version

Theorem bdaybndbday 43444
Description: Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.)
Assertion
Ref Expression
bdaybndbday ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday 𝐴))

Proof of Theorem bdaybndbday
StepHypRef Expression
1 bdaybndex 43443 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
2 bdayval 27580 . . 3 ((𝐵 × {𝐶}) ∈ No → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶}))
31, 2syl 17 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶}))
4 simp3 1138 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐶 ∈ {1o, 2o})
5 snnzg 4725 . . 3 (𝐶 ∈ {1o, 2o} → {𝐶} ≠ ∅)
6 dmxp 5866 . . 3 ({𝐶} ≠ ∅ → dom (𝐵 × {𝐶}) = 𝐵)
74, 5, 63syl 18 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → dom (𝐵 × {𝐶}) = 𝐵)
8 simp2 1137 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐵 = ( bday 𝐴))
93, 7, 83eqtrd 2769 1 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2110  wne 2926  c0 4281  {csn 4574  {cpr 4576   × cxp 5612  dom cdm 5614  cfv 6477  1oc1o 8373  2oc2o 8374   No csur 27571   bday cbday 27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-no 27574  df-bday 27576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator