Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdaybndbday Structured version   Visualization version   GIF version

Theorem bdaybndbday 43421
Description: Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.)
Assertion
Ref Expression
bdaybndbday ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday 𝐴))

Proof of Theorem bdaybndbday
StepHypRef Expression
1 bdaybndex 43420 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
2 bdayval 27560 . . 3 ((𝐵 × {𝐶}) ∈ No → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶}))
31, 2syl 17 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶}))
4 simp3 1138 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐶 ∈ {1o, 2o})
5 snnzg 4738 . . 3 (𝐶 ∈ {1o, 2o} → {𝐶} ≠ ∅)
6 dmxp 5892 . . 3 ({𝐶} ≠ ∅ → dom (𝐵 × {𝐶}) = 𝐵)
74, 5, 63syl 18 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → dom (𝐵 × {𝐶}) = 𝐵)
8 simp2 1137 . 2 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐵 = ( bday 𝐴))
93, 7, 83eqtrd 2768 1 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  c0 4296  {csn 4589  {cpr 4591   × cxp 5636  dom cdm 5638  cfv 6511  1oc1o 8427  2oc2o 8428   No csur 27551   bday cbday 27553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-no 27554  df-bday 27556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator