| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bdaybndbday | Structured version Visualization version GIF version | ||
| Description: Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.) |
| Ref | Expression |
|---|---|
| bdaybndbday | ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdaybndex 43538 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) | |
| 2 | bdayval 27597 | . . 3 ⊢ ((𝐵 × {𝐶}) ∈ No → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶})) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶})) |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐶 ∈ {1o, 2o}) | |
| 5 | snnzg 4728 | . . 3 ⊢ (𝐶 ∈ {1o, 2o} → {𝐶} ≠ ∅) | |
| 6 | dmxp 5876 | . . 3 ⊢ ({𝐶} ≠ ∅ → dom (𝐵 × {𝐶}) = 𝐵) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → dom (𝐵 × {𝐶}) = 𝐵) |
| 8 | simp2 1137 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐵 = ( bday ‘𝐴)) | |
| 9 | 3, 7, 8 | 3eqtrd 2772 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∅c0 4284 {csn 4577 {cpr 4579 × cxp 5619 dom cdm 5621 ‘cfv 6489 1oc1o 8387 2oc2o 8388 No csur 27588 bday cbday 27590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-no 27591 df-bday 27593 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |