|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bdaybndbday | Structured version Visualization version GIF version | ||
| Description: Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.) | 
| Ref | Expression | 
|---|---|
| bdaybndbday | ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday ‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdaybndex 43449 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) | |
| 2 | bdayval 27694 | . . 3 ⊢ ((𝐵 × {𝐶}) ∈ No → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶})) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = dom (𝐵 × {𝐶})) | 
| 4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐶 ∈ {1o, 2o}) | |
| 5 | snnzg 4773 | . . 3 ⊢ (𝐶 ∈ {1o, 2o} → {𝐶} ≠ ∅) | |
| 6 | dmxp 5938 | . . 3 ⊢ ({𝐶} ≠ ∅ → dom (𝐵 × {𝐶}) = 𝐵) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → dom (𝐵 × {𝐶}) = 𝐵) | 
| 8 | simp2 1137 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → 𝐵 = ( bday ‘𝐴)) | |
| 9 | 3, 7, 8 | 3eqtrd 2780 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday ‘𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∅c0 4332 {csn 4625 {cpr 4627 × cxp 5682 dom cdm 5684 ‘cfv 6560 1oc1o 8500 2oc2o 8501 No csur 27685 bday cbday 27687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-no 27688 df-bday 27690 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |