| Step | Hyp | Ref
| Expression |
| 1 | | simp2l 1199 |
. . . . 5
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s {𝑋}) |
| 2 | | simp2r 1200 |
. . . . 5
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} <<s 𝐵) |
| 3 | | snnzg 4773 |
. . . . . 6
⊢ (𝑋 ∈
No → {𝑋} ≠
∅) |
| 4 | 3 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} ≠ ∅) |
| 5 | | sslttr 27853 |
. . . . 5
⊢ ((𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵 ∧ {𝑋} ≠ ∅) → 𝐴 <<s 𝐵) |
| 6 | 1, 2, 4, 5 | syl3anc 1372 |
. . . 4
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s 𝐵) |
| 7 | | scutbday 27850 |
. . . 4
⊢ (𝐴 <<s 𝐵 → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 8 | 6, 7 | syl 17 |
. . 3
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 9 | | bdayfn 27819 |
. . . . 5
⊢ bday Fn No
|
| 10 | | ssrab2 4079 |
. . . . 5
⊢ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
|
| 11 | | simp1 1136 |
. . . . . 6
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 ∈ No
) |
| 12 | | simp2 1137 |
. . . . . 6
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) |
| 13 | | sneq 4635 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → {𝑦} = {𝑋}) |
| 14 | 13 | breq2d 5154 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑋})) |
| 15 | 13 | breq1d 5152 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → ({𝑦} <<s 𝐵 ↔ {𝑋} <<s 𝐵)) |
| 16 | 14, 15 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵))) |
| 17 | 16 | elrab 3691 |
. . . . . 6
⊢ (𝑋 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑋 ∈ No
∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵))) |
| 18 | 11, 12, 17 | sylanbrc 583 |
. . . . 5
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) |
| 19 | | fnfvima 7254 |
. . . . 5
⊢ (( bday Fn No ∧ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
∧ 𝑋 ∈ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday
‘𝑋) ∈
( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 20 | 9, 10, 18, 19 | mp3an12i 1466 |
. . . 4
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday
‘𝑋) ∈
( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 21 | | intss1 4962 |
. . . 4
⊢ (( bday ‘𝑋) ∈ ( bday
“ {𝑦 ∈
No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ∩
( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday
‘𝑋)) |
| 22 | 20, 21 | syl 17 |
. . 3
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ∩
( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday
‘𝑋)) |
| 23 | 8, 22 | eqsstrd 4017 |
. 2
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) ⊆ ( bday ‘𝑋)) |
| 24 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s {𝑋}) |
| 25 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} <<s 𝐵) |
| 26 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} ≠ ∅) |
| 27 | 24, 25, 26, 5 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s 𝐵) |
| 28 | 27, 7 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 29 | 28 | eqeq1d 2738 |
. . . . . . . . 9
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋)
↔ ∩ ( bday
“ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday
‘𝑋))) |
| 30 | | eqcom 2743 |
. . . . . . . . 9
⊢ (∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday
‘𝑋) ↔
( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 31 | 29, 30 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋)
↔ ( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) |
| 32 | 31 | biimpa 476 |
. . . . . . 7
⊢ (((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋))
→ ( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 33 | 17 | biimpri 228 |
. . . . . . . 8
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝑋 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) |
| 34 | 27 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋))
→ 𝐴 <<s 𝐵) |
| 35 | | conway 27845 |
. . . . . . . . 9
⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ (((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋))
→ ∃!𝑥 ∈
{𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |
| 37 | | fveqeq2 6914 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) |
| 38 | 37 | riota2 7414 |
. . . . . . . . 9
⊢ ((𝑋 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋)) |
| 39 | | eqcom 2743 |
. . . . . . . . 9
⊢
((℩𝑥
∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋 ↔ 𝑋 = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) |
| 40 | 38, 39 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝑋 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})))) |
| 41 | 33, 36, 40 | syl2an2r 685 |
. . . . . . 7
⊢ (((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋))
→ (( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})))) |
| 42 | 32, 41 | mpbid 232 |
. . . . . 6
⊢ (((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋))
→ 𝑋 =
(℩𝑥 ∈
{𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) |
| 43 | | scutval 27846 |
. . . . . . 7
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) |
| 44 | 34, 43 | syl 17 |
. . . . . 6
⊢ (((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋))
→ (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) |
| 45 | 42, 44 | eqtr4d 2779 |
. . . . 5
⊢ (((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋))
→ 𝑋 = (𝐴 |s 𝐵)) |
| 46 | 45 | ex 412 |
. . . 4
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday
‘(𝐴 |s 𝐵)) = (
bday ‘𝑋)
→ 𝑋 = (𝐴 |s 𝐵))) |
| 47 | 46 | necon3d 2960 |
. . 3
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (𝑋 ≠ (𝐴 |s 𝐵) → ( bday
‘(𝐴 |s 𝐵)) ≠ (
bday ‘𝑋))) |
| 48 | 47 | 3impia 1117 |
. 2
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) ≠ (
bday ‘𝑋)) |
| 49 | | bdayelon 27822 |
. . 3
⊢ ( bday ‘(𝐴 |s 𝐵)) ∈ On |
| 50 | | bdayelon 27822 |
. . 3
⊢ ( bday ‘𝑋) ∈ On |
| 51 | | onelpss 6423 |
. . 3
⊢ ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ (
bday ‘𝑋)
∈ On) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday
‘𝑋) ↔
(( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday
‘𝑋) ∧
( bday ‘(𝐴 |s 𝐵)) ≠ ( bday
‘𝑋)))) |
| 52 | 49, 50, 51 | mp2an 692 |
. 2
⊢ (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday
‘𝑋) ↔
(( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday
‘𝑋) ∧
( bday ‘(𝐴 |s 𝐵)) ≠ ( bday
‘𝑋))) |
| 53 | 23, 48, 52 | sylanbrc 583 |
1
⊢ ((𝑋 ∈
No ∧ (𝐴
<<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘𝑋)) |