MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaylt Structured version   Visualization version   GIF version

Theorem scutbdaylt 27787
Description: If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
scutbdaylt ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))

Proof of Theorem scutbdaylt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1200 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s {𝑋})
2 simp2r 1201 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} <<s 𝐵)
3 snnzg 4755 . . . . . 6 (𝑋 No → {𝑋} ≠ ∅)
433ad2ant1 1133 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} ≠ ∅)
5 sslttr 27776 . . . . 5 ((𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵 ∧ {𝑋} ≠ ∅) → 𝐴 <<s 𝐵)
61, 2, 4, 5syl3anc 1373 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s 𝐵)
7 scutbday 27773 . . . 4 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
86, 7syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
9 bdayfn 27742 . . . . 5 bday Fn No
10 ssrab2 4060 . . . . 5 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
11 simp1 1136 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 No )
12 simp2 1137 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵))
13 sneq 4616 . . . . . . . . 9 (𝑦 = 𝑋 → {𝑦} = {𝑋})
1413breq2d 5136 . . . . . . . 8 (𝑦 = 𝑋 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑋}))
1513breq1d 5134 . . . . . . . 8 (𝑦 = 𝑋 → ({𝑦} <<s 𝐵 ↔ {𝑋} <<s 𝐵))
1614, 15anbi12d 632 . . . . . . 7 (𝑦 = 𝑋 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1716elrab 3676 . . . . . 6 (𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1811, 12, 17sylanbrc 583 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
19 fnfvima 7230 . . . . 5 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
209, 10, 18, 19mp3an12i 1467 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
21 intss1 4944 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
2220, 21syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
238, 22eqsstrd 3998 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋))
24 simprl 770 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s {𝑋})
25 simprr 772 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} <<s 𝐵)
263adantr 480 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} ≠ ∅)
2724, 25, 26, 5syl3anc 1373 . . . . . . . . . . 11 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s 𝐵)
2827, 7syl 17 . . . . . . . . . 10 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
2928eqeq1d 2738 . . . . . . . . 9 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋)))
30 eqcom 2743 . . . . . . . . 9 ( ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3129, 30bitrdi 287 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3231biimpa 476 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3317biimpri 228 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
3427adantr 480 . . . . . . . . 9 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝐴 <<s 𝐵)
35 conway 27768 . . . . . . . . 9 (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3634, 35syl 17 . . . . . . . 8 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
37 fveqeq2 6890 . . . . . . . . . 10 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3837riota2 7392 . . . . . . . . 9 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋))
39 eqcom 2743 . . . . . . . . 9 ((𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4038, 39bitrdi 287 . . . . . . . 8 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4133, 36, 40syl2an2r 685 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4232, 41mpbid 232 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
43 scutval 27769 . . . . . . 7 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4434, 43syl 17 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4542, 44eqtr4d 2774 . . . . 5 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝐴 |s 𝐵))
4645ex 412 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) → 𝑋 = (𝐴 |s 𝐵)))
4746necon3d 2954 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (𝑋 ≠ (𝐴 |s 𝐵) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
48473impia 1117 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))
49 bdayelon 27745 . . 3 ( bday ‘(𝐴 |s 𝐵)) ∈ On
50 bdayelon 27745 . . 3 ( bday 𝑋) ∈ On
51 onelpss 6397 . . 3 ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))))
5249, 50, 51mp2an 692 . 2 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
5323, 48, 52sylanbrc 583 1 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  ∃!wreu 3362  {crab 3420  wss 3931  c0 4313  {csn 4606   cint 4927   class class class wbr 5124  cima 5662  Oncon0 6357   Fn wfn 6531  cfv 6536  crio 7366  (class class class)co 7410   No csur 27608   bday cbday 27610   <<s csslt 27749   |s cscut 27751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752
This theorem is referenced by:  slerec  27788
  Copyright terms: Public domain W3C validator