MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaylt Structured version   Visualization version   GIF version

Theorem scutbdaylt 27881
Description: If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
scutbdaylt ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))

Proof of Theorem scutbdaylt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1199 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s {𝑋})
2 simp2r 1200 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} <<s 𝐵)
3 snnzg 4799 . . . . . 6 (𝑋 No → {𝑋} ≠ ∅)
433ad2ant1 1133 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} ≠ ∅)
5 sslttr 27870 . . . . 5 ((𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵 ∧ {𝑋} ≠ ∅) → 𝐴 <<s 𝐵)
61, 2, 4, 5syl3anc 1371 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s 𝐵)
7 scutbday 27867 . . . 4 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
86, 7syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
9 bdayfn 27836 . . . . 5 bday Fn No
10 ssrab2 4103 . . . . 5 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
11 simp1 1136 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 No )
12 simp2 1137 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵))
13 sneq 4658 . . . . . . . . 9 (𝑦 = 𝑋 → {𝑦} = {𝑋})
1413breq2d 5178 . . . . . . . 8 (𝑦 = 𝑋 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑋}))
1513breq1d 5176 . . . . . . . 8 (𝑦 = 𝑋 → ({𝑦} <<s 𝐵 ↔ {𝑋} <<s 𝐵))
1614, 15anbi12d 631 . . . . . . 7 (𝑦 = 𝑋 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1716elrab 3708 . . . . . 6 (𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1811, 12, 17sylanbrc 582 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
19 fnfvima 7270 . . . . 5 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
209, 10, 18, 19mp3an12i 1465 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
21 intss1 4987 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
2220, 21syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
238, 22eqsstrd 4047 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋))
24 simprl 770 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s {𝑋})
25 simprr 772 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} <<s 𝐵)
263adantr 480 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} ≠ ∅)
2724, 25, 26, 5syl3anc 1371 . . . . . . . . . . 11 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s 𝐵)
2827, 7syl 17 . . . . . . . . . 10 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
2928eqeq1d 2742 . . . . . . . . 9 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋)))
30 eqcom 2747 . . . . . . . . 9 ( ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3129, 30bitrdi 287 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3231biimpa 476 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3317biimpri 228 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
3427adantr 480 . . . . . . . . 9 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝐴 <<s 𝐵)
35 conway 27862 . . . . . . . . 9 (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3634, 35syl 17 . . . . . . . 8 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
37 fveqeq2 6929 . . . . . . . . . 10 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3837riota2 7430 . . . . . . . . 9 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋))
39 eqcom 2747 . . . . . . . . 9 ((𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4038, 39bitrdi 287 . . . . . . . 8 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4133, 36, 40syl2an2r 684 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4232, 41mpbid 232 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
43 scutval 27863 . . . . . . 7 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4434, 43syl 17 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4542, 44eqtr4d 2783 . . . . 5 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝐴 |s 𝐵))
4645ex 412 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) → 𝑋 = (𝐴 |s 𝐵)))
4746necon3d 2967 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (𝑋 ≠ (𝐴 |s 𝐵) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
48473impia 1117 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))
49 bdayelon 27839 . . 3 ( bday ‘(𝐴 |s 𝐵)) ∈ On
50 bdayelon 27839 . . 3 ( bday 𝑋) ∈ On
51 onelpss 6435 . . 3 ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))))
5249, 50, 51mp2an 691 . 2 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
5323, 48, 52sylanbrc 582 1 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  ∃!wreu 3386  {crab 3443  wss 3976  c0 4352  {csn 4648   cint 4970   class class class wbr 5166  cima 5703  Oncon0 6395   Fn wfn 6568  cfv 6573  crio 7403  (class class class)co 7448   No csur 27702   bday cbday 27704   <<s csslt 27843   |s cscut 27845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846
This theorem is referenced by:  slerec  27882
  Copyright terms: Public domain W3C validator