MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaylt Structured version   Visualization version   GIF version

Theorem scutbdaylt 27157
Description: If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
scutbdaylt ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))

Proof of Theorem scutbdaylt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1199 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s {𝑋})
2 simp2r 1200 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} <<s 𝐵)
3 snnzg 4735 . . . . . 6 (𝑋 No → {𝑋} ≠ ∅)
433ad2ant1 1133 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} ≠ ∅)
5 sslttr 27146 . . . . 5 ((𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵 ∧ {𝑋} ≠ ∅) → 𝐴 <<s 𝐵)
61, 2, 4, 5syl3anc 1371 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s 𝐵)
7 scutbday 27143 . . . 4 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
86, 7syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
9 bdayfn 27113 . . . . 5 bday Fn No
10 ssrab2 4037 . . . . 5 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
11 simp1 1136 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 No )
12 simp2 1137 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵))
13 sneq 4596 . . . . . . . . 9 (𝑦 = 𝑋 → {𝑦} = {𝑋})
1413breq2d 5117 . . . . . . . 8 (𝑦 = 𝑋 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑋}))
1513breq1d 5115 . . . . . . . 8 (𝑦 = 𝑋 → ({𝑦} <<s 𝐵 ↔ {𝑋} <<s 𝐵))
1614, 15anbi12d 631 . . . . . . 7 (𝑦 = 𝑋 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1716elrab 3645 . . . . . 6 (𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1811, 12, 17sylanbrc 583 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
19 fnfvima 7183 . . . . 5 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
209, 10, 18, 19mp3an12i 1465 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
21 intss1 4924 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
2220, 21syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
238, 22eqsstrd 3982 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋))
24 simprl 769 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s {𝑋})
25 simprr 771 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} <<s 𝐵)
263adantr 481 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} ≠ ∅)
2724, 25, 26, 5syl3anc 1371 . . . . . . . . . . 11 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s 𝐵)
2827, 7syl 17 . . . . . . . . . 10 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
2928eqeq1d 2738 . . . . . . . . 9 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋)))
30 eqcom 2743 . . . . . . . . 9 ( ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3129, 30bitrdi 286 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3231biimpa 477 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3317biimpri 227 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
3427adantr 481 . . . . . . . . 9 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝐴 <<s 𝐵)
35 conway 27138 . . . . . . . . 9 (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3634, 35syl 17 . . . . . . . 8 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
37 fveqeq2 6851 . . . . . . . . . 10 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3837riota2 7339 . . . . . . . . 9 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋))
39 eqcom 2743 . . . . . . . . 9 ((𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4038, 39bitrdi 286 . . . . . . . 8 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4133, 36, 40syl2an2r 683 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4232, 41mpbid 231 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
43 scutval 27139 . . . . . . 7 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4434, 43syl 17 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4542, 44eqtr4d 2779 . . . . 5 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝐴 |s 𝐵))
4645ex 413 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) → 𝑋 = (𝐴 |s 𝐵)))
4746necon3d 2964 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (𝑋 ≠ (𝐴 |s 𝐵) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
48473impia 1117 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))
49 bdayelon 27116 . . 3 ( bday ‘(𝐴 |s 𝐵)) ∈ On
50 bdayelon 27116 . . 3 ( bday 𝑋) ∈ On
51 onelpss 6357 . . 3 ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))))
5249, 50, 51mp2an 690 . 2 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
5323, 48, 52sylanbrc 583 1 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  ∃!wreu 3351  {crab 3407  wss 3910  c0 4282  {csn 4586   cint 4907   class class class wbr 5105  cima 5636  Oncon0 6317   Fn wfn 6491  cfv 6496  crio 7312  (class class class)co 7357   No csur 26988   bday cbday 26990   <<s csslt 27120   |s cscut 27122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sslt 27121  df-scut 27123
This theorem is referenced by:  slerec  27158
  Copyright terms: Public domain W3C validator