Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutbdaylt Structured version   Visualization version   GIF version

Theorem scutbdaylt 33939
Description: If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
scutbdaylt ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))

Proof of Theorem scutbdaylt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1197 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s {𝑋})
2 simp2r 1198 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} <<s 𝐵)
3 snnzg 4707 . . . . . 6 (𝑋 No → {𝑋} ≠ ∅)
433ad2ant1 1131 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → {𝑋} ≠ ∅)
5 sslttr 33928 . . . . 5 ((𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵 ∧ {𝑋} ≠ ∅) → 𝐴 <<s 𝐵)
61, 2, 4, 5syl3anc 1369 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝐴 <<s 𝐵)
7 scutbday 33925 . . . 4 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
86, 7syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
9 bdayfn 33895 . . . . 5 bday Fn No
10 ssrab2 4009 . . . . 5 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
11 simp1 1134 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 No )
12 simp2 1135 . . . . . 6 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵))
13 sneq 4568 . . . . . . . . 9 (𝑦 = 𝑋 → {𝑦} = {𝑋})
1413breq2d 5082 . . . . . . . 8 (𝑦 = 𝑋 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑋}))
1513breq1d 5080 . . . . . . . 8 (𝑦 = 𝑋 → ({𝑦} <<s 𝐵 ↔ {𝑋} <<s 𝐵))
1614, 15anbi12d 630 . . . . . . 7 (𝑦 = 𝑋 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1716elrab 3617 . . . . . 6 (𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)))
1811, 12, 17sylanbrc 582 . . . . 5 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
19 fnfvima 7091 . . . . 5 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
209, 10, 18, 19mp3an12i 1463 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
21 intss1 4891 . . . 4 (( bday 𝑋) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
2220, 21syl 17 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑋))
238, 22eqsstrd 3955 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋))
24 simprl 767 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s {𝑋})
25 simprr 769 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} <<s 𝐵)
263adantr 480 . . . . . . . . . . . 12 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → {𝑋} ≠ ∅)
2724, 25, 26, 5syl3anc 1369 . . . . . . . . . . 11 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝐴 <<s 𝐵)
2827, 7syl 17 . . . . . . . . . 10 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
2928eqeq1d 2740 . . . . . . . . 9 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋)))
30 eqcom 2745 . . . . . . . . 9 ( ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3129, 30bitrdi 286 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3231biimpa 476 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3317biimpri 227 . . . . . . . 8 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → 𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
3427adantr 480 . . . . . . . . 9 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝐴 <<s 𝐵)
35 conway 33920 . . . . . . . . 9 (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3634, 35syl 17 . . . . . . . 8 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
37 fveqeq2 6765 . . . . . . . . . 10 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
3837riota2 7238 . . . . . . . . 9 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋))
39 eqcom 2745 . . . . . . . . 9 ((𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) = 𝑋𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4038, 39bitrdi 286 . . . . . . . 8 ((𝑋 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ∧ ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4133, 36, 40syl2an2r 681 . . . . . . 7 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))))
4232, 41mpbid 231 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
43 scutval 33921 . . . . . . 7 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4434, 43syl 17 . . . . . 6 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
4542, 44eqtr4d 2781 . . . . 5 (((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋)) → 𝑋 = (𝐴 |s 𝐵))
4645ex 412 . . . 4 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = ( bday 𝑋) → 𝑋 = (𝐴 |s 𝐵)))
4746necon3d 2963 . . 3 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵)) → (𝑋 ≠ (𝐴 |s 𝐵) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
48473impia 1115 . 2 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))
49 bdayelon 33898 . . 3 ( bday ‘(𝐴 |s 𝐵)) ∈ On
50 bdayelon 33898 . . 3 ( bday 𝑋) ∈ On
51 onelpss 6291 . . 3 ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋))))
5249, 50, 51mp2an 688 . 2 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑋) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ ( bday 𝑋)))
5323, 48, 52sylanbrc 582 1 ((𝑋 No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  ∃!wreu 3065  {crab 3067  wss 3883  c0 4253  {csn 4558   cint 4876   class class class wbr 5070  cima 5583  Oncon0 6251   Fn wfn 6413  cfv 6418  crio 7211  (class class class)co 7255   No csur 33770   bday cbday 33772   <<s csslt 33902   |s cscut 33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905
This theorem is referenced by:  slerec  33940
  Copyright terms: Public domain W3C validator