MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trnei Structured version   Visualization version   GIF version

Theorem trnei 23835
Description: The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 23830 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trnei ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴)))

Proof of Theorem trnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 topontop 22856 . . . 4 (𝐽 ∈ (TopOn‘𝑌) → 𝐽 ∈ Top)
213ad2ant1 1133 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐽 ∈ Top)
3 simp2 1137 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐴𝑌)
4 toponuni 22857 . . . . 5 (𝐽 ∈ (TopOn‘𝑌) → 𝑌 = 𝐽)
543ad2ant1 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑌 = 𝐽)
63, 5sseqtrd 4000 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐴 𝐽)
7 simp3 1138 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑃𝑌)
87, 5eleqtrd 2837 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑃 𝐽)
9 eqid 2736 . . . 4 𝐽 = 𝐽
109neindisj2 23066 . . 3 ((𝐽 ∈ Top ∧ 𝐴 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
112, 6, 8, 10syl3anc 1373 . 2 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
12 simp1 1136 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐽 ∈ (TopOn‘𝑌))
137snssd 4790 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → {𝑃} ⊆ 𝑌)
14 snnzg 4755 . . . . 5 (𝑃𝑌 → {𝑃} ≠ ∅)
15143ad2ant3 1135 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → {𝑃} ≠ ∅)
16 neifil 23823 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ {𝑃} ⊆ 𝑌 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌))
1712, 13, 15, 16syl3anc 1373 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌))
18 trfil2 23830 . . 3 ((((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
1917, 3, 18syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
2011, 19bitr4d 282 1 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cin 3930  wss 3931  c0 4313  {csn 4606   cuni 4888  cfv 6536  (class class class)co 7410  t crest 17439  Topctop 22836  TopOnctopon 22853  clsccl 22961  neicnei 23040  Filcfil 23788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-rest 17441  df-fbas 21317  df-top 22837  df-topon 22854  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-fil 23789
This theorem is referenced by:  flfcntr  23986  cnextfun  24007  cnextfvval  24008  cnextf  24009  cnextcn  24010  cnextfres1  24011  cnextucn  24246  ucnextcn  24247  limcflflem  25838  rrhre  34057
  Copyright terms: Public domain W3C validator