| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trnei | Structured version Visualization version GIF version | ||
| Description: The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 23803 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| trnei | ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22829 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝐽 ∈ Top) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ Top) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ 𝑌) | |
| 4 | toponuni 22830 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐽) | |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑌 = ∪ 𝐽) |
| 6 | 3, 5 | sseqtrd 3971 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ ∪ 𝐽) |
| 7 | simp3 1138 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ 𝑌) | |
| 8 | 7, 5 | eleqtrd 2833 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ ∪ 𝐽) |
| 9 | eqid 2731 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | neindisj2 23039 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
| 11 | 2, 6, 8, 10 | syl3anc 1373 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
| 12 | simp1 1136 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑌)) | |
| 13 | 7 | snssd 4761 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ⊆ 𝑌) |
| 14 | snnzg 4727 | . . . . 5 ⊢ (𝑃 ∈ 𝑌 → {𝑃} ≠ ∅) | |
| 15 | 14 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ≠ ∅) |
| 16 | neifil 23796 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ {𝑃} ⊆ 𝑌 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) | |
| 17 | 12, 13, 15, 16 | syl3anc 1373 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) |
| 18 | trfil2 23803 | . . 3 ⊢ ((((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) | |
| 19 | 17, 3, 18 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
| 20 | 11, 19 | bitr4d 282 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 ∪ cuni 4859 ‘cfv 6481 (class class class)co 7346 ↾t crest 17324 Topctop 22809 TopOnctopon 22826 clsccl 22934 neicnei 23013 Filcfil 23761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-rest 17326 df-fbas 21289 df-top 22810 df-topon 22827 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-fil 23762 |
| This theorem is referenced by: flfcntr 23959 cnextfun 23980 cnextfvval 23981 cnextf 23982 cnextcn 23983 cnextfres1 23984 cnextucn 24218 ucnextcn 24219 limcflflem 25809 rrhre 34032 |
| Copyright terms: Public domain | W3C validator |