![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trnei | Structured version Visualization version GIF version |
Description: The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 22099 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trnei | ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 21125 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝐽 ∈ Top) | |
2 | 1 | 3ad2ant1 1124 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ Top) |
3 | simp2 1128 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ 𝑌) | |
4 | toponuni 21126 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐽) | |
5 | 4 | 3ad2ant1 1124 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑌 = ∪ 𝐽) |
6 | 3, 5 | sseqtrd 3860 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ ∪ 𝐽) |
7 | simp3 1129 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ 𝑌) | |
8 | 7, 5 | eleqtrd 2861 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ ∪ 𝐽) |
9 | eqid 2778 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | neindisj2 21335 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
11 | 2, 6, 8, 10 | syl3anc 1439 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
12 | simp1 1127 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑌)) | |
13 | 7 | snssd 4571 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ⊆ 𝑌) |
14 | snnzg 4541 | . . . . 5 ⊢ (𝑃 ∈ 𝑌 → {𝑃} ≠ ∅) | |
15 | 14 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ≠ ∅) |
16 | neifil 22092 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ {𝑃} ⊆ 𝑌 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) | |
17 | 12, 13, 15, 16 | syl3anc 1439 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) |
18 | trfil2 22099 | . . 3 ⊢ ((((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) | |
19 | 17, 3, 18 | syl2anc 579 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
20 | 11, 19 | bitr4d 274 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ∩ cin 3791 ⊆ wss 3792 ∅c0 4141 {csn 4398 ∪ cuni 4671 ‘cfv 6135 (class class class)co 6922 ↾t crest 16467 Topctop 21105 TopOnctopon 21122 clsccl 21230 neicnei 21309 Filcfil 22057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-rest 16469 df-fbas 20139 df-top 21106 df-topon 21123 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-fil 22058 |
This theorem is referenced by: flfcntr 22255 cnextfun 22276 cnextfvval 22277 cnextf 22278 cnextcn 22279 cnextfres1 22280 cnextucn 22515 ucnextcn 22516 limcflflem 24081 rrhre 30663 |
Copyright terms: Public domain | W3C validator |