MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trnei Structured version   Visualization version   GIF version

Theorem trnei 23024
Description: The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 23019 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trnei ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴)))

Proof of Theorem trnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 topontop 22043 . . . 4 (𝐽 ∈ (TopOn‘𝑌) → 𝐽 ∈ Top)
213ad2ant1 1131 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐽 ∈ Top)
3 simp2 1135 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐴𝑌)
4 toponuni 22044 . . . . 5 (𝐽 ∈ (TopOn‘𝑌) → 𝑌 = 𝐽)
543ad2ant1 1131 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑌 = 𝐽)
63, 5sseqtrd 3965 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐴 𝐽)
7 simp3 1136 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑃𝑌)
87, 5eleqtrd 2842 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑃 𝐽)
9 eqid 2739 . . . 4 𝐽 = 𝐽
109neindisj2 22255 . . 3 ((𝐽 ∈ Top ∧ 𝐴 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
112, 6, 8, 10syl3anc 1369 . 2 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
12 simp1 1134 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐽 ∈ (TopOn‘𝑌))
137snssd 4747 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → {𝑃} ⊆ 𝑌)
14 snnzg 4715 . . . . 5 (𝑃𝑌 → {𝑃} ≠ ∅)
15143ad2ant3 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → {𝑃} ≠ ∅)
16 neifil 23012 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ {𝑃} ⊆ 𝑌 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌))
1712, 13, 15, 16syl3anc 1369 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌))
18 trfil2 23019 . . 3 ((((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
1917, 3, 18syl2anc 583 . 2 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
2011, 19bitr4d 281 1 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  cin 3890  wss 3891  c0 4261  {csn 4566   cuni 4844  cfv 6430  (class class class)co 7268  t crest 17112  Topctop 22023  TopOnctopon 22040  clsccl 22150  neicnei 22229  Filcfil 22977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-rest 17114  df-fbas 20575  df-top 22024  df-topon 22041  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-fil 22978
This theorem is referenced by:  flfcntr  23175  cnextfun  23196  cnextfvval  23197  cnextf  23198  cnextcn  23199  cnextfres1  23200  cnextucn  23436  ucnextcn  23437  limcflflem  25025  rrhre  31950
  Copyright terms: Public domain W3C validator