![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trnei | Structured version Visualization version GIF version |
Description: The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 23916 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trnei | ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22940 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝐽 ∈ Top) | |
2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ Top) |
3 | simp2 1137 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ 𝑌) | |
4 | toponuni 22941 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐽) | |
5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑌 = ∪ 𝐽) |
6 | 3, 5 | sseqtrd 4049 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ ∪ 𝐽) |
7 | simp3 1138 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ 𝑌) | |
8 | 7, 5 | eleqtrd 2846 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ ∪ 𝐽) |
9 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | neindisj2 23152 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
11 | 2, 6, 8, 10 | syl3anc 1371 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
12 | simp1 1136 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑌)) | |
13 | 7 | snssd 4834 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ⊆ 𝑌) |
14 | snnzg 4799 | . . . . 5 ⊢ (𝑃 ∈ 𝑌 → {𝑃} ≠ ∅) | |
15 | 14 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ≠ ∅) |
16 | neifil 23909 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ {𝑃} ⊆ 𝑌 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) | |
17 | 12, 13, 15, 16 | syl3anc 1371 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) |
18 | trfil2 23916 | . . 3 ⊢ ((((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) | |
19 | 17, 3, 18 | syl2anc 583 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
20 | 11, 19 | bitr4d 282 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 TopOnctopon 22937 clsccl 23047 neicnei 23126 Filcfil 23874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-rest 17482 df-fbas 21384 df-top 22921 df-topon 22938 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-fil 23875 |
This theorem is referenced by: flfcntr 24072 cnextfun 24093 cnextfvval 24094 cnextf 24095 cnextcn 24096 cnextfres1 24097 cnextucn 24333 ucnextcn 24334 limcflflem 25935 rrhre 33967 |
Copyright terms: Public domain | W3C validator |