MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trnei Structured version   Visualization version   GIF version

Theorem trnei 22497
Description: The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 22492 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trnei ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴)))

Proof of Theorem trnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 topontop 21518 . . . 4 (𝐽 ∈ (TopOn‘𝑌) → 𝐽 ∈ Top)
213ad2ant1 1130 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐽 ∈ Top)
3 simp2 1134 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐴𝑌)
4 toponuni 21519 . . . . 5 (𝐽 ∈ (TopOn‘𝑌) → 𝑌 = 𝐽)
543ad2ant1 1130 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑌 = 𝐽)
63, 5sseqtrd 3955 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐴 𝐽)
7 simp3 1135 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑃𝑌)
87, 5eleqtrd 2892 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝑃 𝐽)
9 eqid 2798 . . . 4 𝐽 = 𝐽
109neindisj2 21728 . . 3 ((𝐽 ∈ Top ∧ 𝐴 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
112, 6, 8, 10syl3anc 1368 . 2 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
12 simp1 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → 𝐽 ∈ (TopOn‘𝑌))
137snssd 4702 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → {𝑃} ⊆ 𝑌)
14 snnzg 4670 . . . . 5 (𝑃𝑌 → {𝑃} ≠ ∅)
15143ad2ant3 1132 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → {𝑃} ≠ ∅)
16 neifil 22485 . . . 4 ((𝐽 ∈ (TopOn‘𝑌) ∧ {𝑃} ⊆ 𝑌 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌))
1712, 13, 15, 16syl3anc 1368 . . 3 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌))
18 trfil2 22492 . . 3 ((((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
1917, 3, 18syl2anc 587 . 2 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣𝐴) ≠ ∅))
2011, 19bitr4d 285 1 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cin 3880  wss 3881  c0 4243  {csn 4525   cuni 4800  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515  clsccl 21623  neicnei 21702  Filcfil 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-rest 16688  df-fbas 20088  df-top 21499  df-topon 21516  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-fil 22451
This theorem is referenced by:  flfcntr  22648  cnextfun  22669  cnextfvval  22670  cnextf  22671  cnextcn  22672  cnextfres1  22673  cnextucn  22909  ucnextcn  22910  limcflflem  24483  rrhre  31372
  Copyright terms: Public domain W3C validator