MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiflim Structured version   Visualization version   GIF version

Theorem neiflim 23983
Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
neiflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))

Proof of Theorem neiflim
StepHypRef Expression
1 ssid 4005 . . . 4 ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})
21jctr 524 . . 3 (𝐴𝑋 → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))
32adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))
4 simpl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 snssi 4807 . . . . 5 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
65adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ⊆ 𝑋)
7 snnzg 4773 . . . . 5 (𝐴𝑋 → {𝐴} ≠ ∅)
87adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ≠ ∅)
9 neifil 23889 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
104, 6, 8, 9syl3anc 1372 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
11 elflim 23980 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))))
1210, 11syldan 591 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))))
133, 12mpbird 257 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wne 2939  wss 3950  c0 4332  {csn 4625  cfv 6560  (class class class)co 7432  TopOnctopon 22917  neicnei 23106  Filcfil 23854   fLim cflim 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-fbas 21362  df-top 22901  df-topon 22918  df-nei 23107  df-fil 23855  df-flim 23948
This theorem is referenced by:  flimcf  23991  cnpflf2  24009  cnpflf  24010  flfcntr  24052
  Copyright terms: Public domain W3C validator