MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiflim Structured version   Visualization version   GIF version

Theorem neiflim 23033
Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
neiflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))

Proof of Theorem neiflim
StepHypRef Expression
1 ssid 3939 . . . 4 ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})
21jctr 524 . . 3 (𝐴𝑋 → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))
32adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))
4 simpl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 snssi 4738 . . . . 5 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
65adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ⊆ 𝑋)
7 snnzg 4707 . . . . 5 (𝐴𝑋 → {𝐴} ≠ ∅)
87adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ≠ ∅)
9 neifil 22939 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
104, 6, 8, 9syl3anc 1369 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
11 elflim 23030 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))))
1210, 11syldan 590 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))))
133, 12mpbird 256 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wne 2942  wss 3883  c0 4253  {csn 4558  cfv 6418  (class class class)co 7255  TopOnctopon 21967  neicnei 22156  Filcfil 22904   fLim cflim 22993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-top 21951  df-topon 21968  df-nei 22157  df-fil 22905  df-flim 22998
This theorem is referenced by:  flimcf  23041  cnpflf2  23059  cnpflf  23060  flfcntr  23102
  Copyright terms: Public domain W3C validator