Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neiflim | Structured version Visualization version GIF version |
Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
neiflim | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . . . 4 ⊢ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}) | |
2 | 1 | jctr 525 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))) |
4 | simpl 483 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
5 | snssi 4741 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) | |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ 𝑋) |
7 | snnzg 4710 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ≠ ∅) | |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ≠ ∅) |
9 | neifil 23031 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) | |
10 | 4, 6, 8, 9 | syl3anc 1370 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
11 | elflim 23122 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))) | |
12 | 10, 11 | syldan 591 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))) |
13 | 3, 12 | mpbird 256 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 {csn 4561 ‘cfv 6433 (class class class)co 7275 TopOnctopon 22059 neicnei 22248 Filcfil 22996 fLim cflim 23085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-fbas 20594 df-top 22043 df-topon 22060 df-nei 22249 df-fil 22997 df-flim 23090 |
This theorem is referenced by: flimcf 23133 cnpflf2 23151 cnpflf 23152 flfcntr 23194 |
Copyright terms: Public domain | W3C validator |