![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neiflim | Structured version Visualization version GIF version |
Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
neiflim | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3999 | . . . 4 ⊢ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}) | |
2 | 1 | jctr 523 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))) |
3 | 2 | adantl 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))) |
4 | simpl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
5 | snssi 4813 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) | |
6 | 5 | adantl 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ 𝑋) |
7 | snnzg 4780 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ≠ ∅) | |
8 | 7 | adantl 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ≠ ∅) |
9 | neifil 23828 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) | |
10 | 4, 6, 8, 9 | syl3anc 1368 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
11 | elflim 23919 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))) | |
12 | 10, 11 | syldan 589 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))) |
13 | 3, 12 | mpbird 256 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ≠ wne 2929 ⊆ wss 3944 ∅c0 4322 {csn 4630 ‘cfv 6549 (class class class)co 7419 TopOnctopon 22856 neicnei 23045 Filcfil 23793 fLim cflim 23882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-fbas 21293 df-top 22840 df-topon 22857 df-nei 23046 df-fil 23794 df-flim 23887 |
This theorem is referenced by: flimcf 23930 cnpflf2 23948 cnpflf 23949 flfcntr 23991 |
Copyright terms: Public domain | W3C validator |