MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiflim Structured version   Visualization version   GIF version

Theorem neiflim 23837
Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
neiflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))

Proof of Theorem neiflim
StepHypRef Expression
1 ssid 3966 . . . 4 ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})
21jctr 524 . . 3 (𝐴𝑋 → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))
32adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴})))
4 simpl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 snssi 4768 . . . . 5 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
65adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ⊆ 𝑋)
7 snnzg 4734 . . . . 5 (𝐴𝑋 → {𝐴} ≠ ∅)
87adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ≠ ∅)
9 neifil 23743 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
104, 6, 8, 9syl3anc 1373 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
11 elflim 23834 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))))
1210, 11syldan 591 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((nei‘𝐽)‘{𝐴}))))
133, 12mpbird 257 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wss 3911  c0 4292  {csn 4585  cfv 6499  (class class class)co 7369  TopOnctopon 22773  neicnei 22960  Filcfil 23708   fLim cflim 23797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-fbas 21237  df-top 22757  df-topon 22774  df-nei 22961  df-fil 23709  df-flim 23802
This theorem is referenced by:  flimcf  23845  cnpflf2  23863  cnpflf  23864  flfcntr  23906
  Copyright terms: Public domain W3C validator