Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpadd2at | Structured version Visualization version GIF version |
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
elpadd2at | ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝐾 ∈ Lat) | |
2 | simp2 1135 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
3 | 2 | snssd 4739 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → {𝑄} ⊆ 𝐴) |
4 | simp3 1136 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑅 ∈ 𝐴) | |
5 | snnzg 4707 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ≠ ∅) | |
6 | 5 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → {𝑄} ≠ ∅) |
7 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
11 | 7, 8, 9, 10 | elpaddat 37745 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ {𝑄} ⊆ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ {𝑄} ≠ ∅) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)))) |
12 | 1, 3, 4, 6, 11 | syl31anc 1371 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)))) |
13 | oveq1 7262 | . . . . . 6 ⊢ (𝑟 = 𝑄 → (𝑟 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
14 | 13 | breq2d 5082 | . . . . 5 ⊢ (𝑟 = 𝑄 → (𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
15 | 14 | rexsng 4607 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
16 | 15 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
17 | 16 | anbi2d 628 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
18 | 12, 17 | bitrd 278 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 Latclat 18064 Atomscatm 37204 +𝑃cpadd 37736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-lub 17979 df-join 17981 df-lat 18065 df-ats 37208 df-padd 37737 |
This theorem is referenced by: elpadd2at2 37748 |
Copyright terms: Public domain | W3C validator |