| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpadd2at | Structured version Visualization version GIF version | ||
| Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.) |
| Ref | Expression |
|---|---|
| paddfval.l | ⊢ ≤ = (le‘𝐾) |
| paddfval.j | ⊢ ∨ = (join‘𝐾) |
| paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| paddfval.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| elpadd2at | ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝐾 ∈ Lat) | |
| 2 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
| 3 | 2 | snssd 4769 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → {𝑄} ⊆ 𝐴) |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑅 ∈ 𝐴) | |
| 5 | snnzg 4734 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ≠ ∅) | |
| 6 | 5 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → {𝑄} ≠ ∅) |
| 7 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 9 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 11 | 7, 8, 9, 10 | elpaddat 39771 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ {𝑄} ⊆ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ {𝑄} ≠ ∅) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)))) |
| 12 | 1, 3, 4, 6, 11 | syl31anc 1375 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)))) |
| 13 | oveq1 7376 | . . . . . 6 ⊢ (𝑟 = 𝑄 → (𝑟 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
| 14 | 13 | breq2d 5114 | . . . . 5 ⊢ (𝑟 = 𝑄 → (𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 15 | 14 | rexsng 4636 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 16 | 15 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 17 | 16 | anbi2d 630 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
| 18 | 12, 17 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 {csn 4585 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 lecple 17203 joincjn 18248 Latclat 18366 Atomscatm 39229 +𝑃cpadd 39762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-lub 18281 df-join 18283 df-lat 18367 df-ats 39233 df-padd 39763 |
| This theorem is referenced by: elpadd2at2 39774 |
| Copyright terms: Public domain | W3C validator |