Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd2at Structured version   Visualization version   GIF version

Theorem elpadd2at 39763
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd2at ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))

Proof of Theorem elpadd2at
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → 𝐾 ∈ Lat)
2 simp2 1137 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → 𝑄𝐴)
32snssd 4834 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → {𝑄} ⊆ 𝐴)
4 simp3 1138 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → 𝑅𝐴)
5 snnzg 4799 . . . 4 (𝑄𝐴 → {𝑄} ≠ ∅)
653ad2ant2 1134 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → {𝑄} ≠ ∅)
7 paddfval.l . . . 4 = (le‘𝐾)
8 paddfval.j . . . 4 = (join‘𝐾)
9 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
10 paddfval.p . . . 4 + = (+𝑃𝐾)
117, 8, 9, 10elpaddat 39761 . . 3 (((𝐾 ∈ Lat ∧ {𝑄} ⊆ 𝐴𝑅𝐴) ∧ {𝑄} ≠ ∅) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅))))
121, 3, 4, 6, 11syl31anc 1373 . 2 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅))))
13 oveq1 7455 . . . . . 6 (𝑟 = 𝑄 → (𝑟 𝑅) = (𝑄 𝑅))
1413breq2d 5178 . . . . 5 (𝑟 = 𝑄 → (𝑆 (𝑟 𝑅) ↔ 𝑆 (𝑄 𝑅)))
1514rexsng 4698 . . . 4 (𝑄𝐴 → (∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅) ↔ 𝑆 (𝑄 𝑅)))
16153ad2ant2 1134 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅) ↔ 𝑆 (𝑄 𝑅)))
1716anbi2d 629 . 2 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → ((𝑆𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅)) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
1812, 17bitrd 279 1 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  +𝑃cpadd 39752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-lub 18416  df-join 18418  df-lat 18502  df-ats 39223  df-padd 39753
This theorem is referenced by:  elpadd2at2  39764
  Copyright terms: Public domain W3C validator