Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd2at Structured version   Visualization version   GIF version

Theorem elpadd2at 39808
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd2at ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))

Proof of Theorem elpadd2at
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → 𝐾 ∈ Lat)
2 simp2 1138 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → 𝑄𝐴)
32snssd 4809 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → {𝑄} ⊆ 𝐴)
4 simp3 1139 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → 𝑅𝐴)
5 snnzg 4774 . . . 4 (𝑄𝐴 → {𝑄} ≠ ∅)
653ad2ant2 1135 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → {𝑄} ≠ ∅)
7 paddfval.l . . . 4 = (le‘𝐾)
8 paddfval.j . . . 4 = (join‘𝐾)
9 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
10 paddfval.p . . . 4 + = (+𝑃𝐾)
117, 8, 9, 10elpaddat 39806 . . 3 (((𝐾 ∈ Lat ∧ {𝑄} ⊆ 𝐴𝑅𝐴) ∧ {𝑄} ≠ ∅) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅))))
121, 3, 4, 6, 11syl31anc 1375 . 2 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅))))
13 oveq1 7438 . . . . . 6 (𝑟 = 𝑄 → (𝑟 𝑅) = (𝑄 𝑅))
1413breq2d 5155 . . . . 5 (𝑟 = 𝑄 → (𝑆 (𝑟 𝑅) ↔ 𝑆 (𝑄 𝑅)))
1514rexsng 4676 . . . 4 (𝑄𝐴 → (∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅) ↔ 𝑆 (𝑄 𝑅)))
16153ad2ant2 1135 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅) ↔ 𝑆 (𝑄 𝑅)))
1716anbi2d 630 . 2 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → ((𝑆𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 (𝑟 𝑅)) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
1812, 17bitrd 279 1 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  lecple 17304  joincjn 18357  Latclat 18476  Atomscatm 39264  +𝑃cpadd 39797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-lub 18391  df-join 18393  df-lat 18477  df-ats 39268  df-padd 39798
This theorem is referenced by:  elpadd2at2  39809
  Copyright terms: Public domain W3C validator