![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpadd2at | Structured version Visualization version GIF version |
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.) |
Ref | Expression |
---|---|
paddfval.l | β’ β€ = (leβπΎ) |
paddfval.j | β’ β¨ = (joinβπΎ) |
paddfval.a | β’ π΄ = (AtomsβπΎ) |
paddfval.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
elpadd2at | β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β (π β ({π} + {π }) β (π β π΄ β§ π β€ (π β¨ π )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β πΎ β Lat) | |
2 | simp2 1136 | . . . 4 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β π β π΄) | |
3 | 2 | snssd 4813 | . . 3 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β {π} β π΄) |
4 | simp3 1137 | . . 3 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β π β π΄) | |
5 | snnzg 4779 | . . . 4 β’ (π β π΄ β {π} β β ) | |
6 | 5 | 3ad2ant2 1133 | . . 3 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β {π} β β ) |
7 | paddfval.l | . . . 4 β’ β€ = (leβπΎ) | |
8 | paddfval.j | . . . 4 β’ β¨ = (joinβπΎ) | |
9 | paddfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
10 | paddfval.p | . . . 4 β’ + = (+πβπΎ) | |
11 | 7, 8, 9, 10 | elpaddat 38979 | . . 3 β’ (((πΎ β Lat β§ {π} β π΄ β§ π β π΄) β§ {π} β β ) β (π β ({π} + {π }) β (π β π΄ β§ βπ β {π}π β€ (π β¨ π )))) |
12 | 1, 3, 4, 6, 11 | syl31anc 1372 | . 2 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β (π β ({π} + {π }) β (π β π΄ β§ βπ β {π}π β€ (π β¨ π )))) |
13 | oveq1 7419 | . . . . . 6 β’ (π = π β (π β¨ π ) = (π β¨ π )) | |
14 | 13 | breq2d 5161 | . . . . 5 β’ (π = π β (π β€ (π β¨ π ) β π β€ (π β¨ π ))) |
15 | 14 | rexsng 4679 | . . . 4 β’ (π β π΄ β (βπ β {π}π β€ (π β¨ π ) β π β€ (π β¨ π ))) |
16 | 15 | 3ad2ant2 1133 | . . 3 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β (βπ β {π}π β€ (π β¨ π ) β π β€ (π β¨ π ))) |
17 | 16 | anbi2d 628 | . 2 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β ((π β π΄ β§ βπ β {π}π β€ (π β¨ π )) β (π β π΄ β§ π β€ (π β¨ π )))) |
18 | 12, 17 | bitrd 278 | 1 β’ ((πΎ β Lat β§ π β π΄ β§ π β π΄) β (π β ({π} + {π }) β (π β π΄ β§ π β€ (π β¨ π )))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 β wss 3949 β c0 4323 {csn 4629 class class class wbr 5149 βcfv 6544 (class class class)co 7412 lecple 17209 joincjn 18269 Latclat 18389 Atomscatm 38437 +πcpadd 38970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-lub 18304 df-join 18306 df-lat 18390 df-ats 38441 df-padd 38971 |
This theorem is referenced by: elpadd2at2 38982 |
Copyright terms: Public domain | W3C validator |