| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpadd2at | Structured version Visualization version GIF version | ||
| Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.) |
| Ref | Expression |
|---|---|
| paddfval.l | ⊢ ≤ = (le‘𝐾) |
| paddfval.j | ⊢ ∨ = (join‘𝐾) |
| paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| paddfval.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| elpadd2at | ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝐾 ∈ Lat) | |
| 2 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
| 3 | 2 | snssd 4776 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → {𝑄} ⊆ 𝐴) |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑅 ∈ 𝐴) | |
| 5 | snnzg 4741 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ≠ ∅) | |
| 6 | 5 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → {𝑄} ≠ ∅) |
| 7 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 9 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 11 | 7, 8, 9, 10 | elpaddat 39805 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ {𝑄} ⊆ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ {𝑄} ≠ ∅) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)))) |
| 12 | 1, 3, 4, 6, 11 | syl31anc 1375 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)))) |
| 13 | oveq1 7397 | . . . . . 6 ⊢ (𝑟 = 𝑄 → (𝑟 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
| 14 | 13 | breq2d 5122 | . . . . 5 ⊢ (𝑟 = 𝑄 → (𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 15 | 14 | rexsng 4643 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 16 | 15 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 17 | 16 | anbi2d 630 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑆 ∈ 𝐴 ∧ ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑟 ∨ 𝑅)) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
| 18 | 12, 17 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 {csn 4592 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 lecple 17234 joincjn 18279 Latclat 18397 Atomscatm 39263 +𝑃cpadd 39796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-lub 18312 df-join 18314 df-lat 18398 df-ats 39267 df-padd 39797 |
| This theorem is referenced by: elpadd2at2 39808 |
| Copyright terms: Public domain | W3C validator |