![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onnobdayg | Structured version Visualization version GIF version |
Description: Every ordinal maps to a surreal number of that birthday. (Contributed by RP, 21-Sep-2023.) |
Ref | Expression |
---|---|
onnobdayg | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onnog 43386 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) | |
2 | bdayval 27703 | . . 3 ⊢ ((𝐴 × {𝐵}) ∈ No → ( bday ‘(𝐴 × {𝐵})) = dom (𝐴 × {𝐵})) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = dom (𝐴 × {𝐵})) |
4 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → 𝐵 ∈ {1o, 2o}) | |
5 | snnzg 4799 | . . 3 ⊢ (𝐵 ∈ {1o, 2o} → {𝐵} ≠ ∅) | |
6 | dmxp 5948 | . . 3 ⊢ ({𝐵} ≠ ∅ → dom (𝐴 × {𝐵}) = 𝐴) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → dom (𝐴 × {𝐵}) = 𝐴) |
8 | 3, 7 | eqtrd 2780 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 {cpr 4650 × cxp 5693 dom cdm 5695 Oncon0 6390 ‘cfv 6568 1oc1o 8509 2oc2o 8510 No csur 27694 bday cbday 27696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-fv 6576 df-no 27697 df-bday 27699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |