| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onnobdayg | Structured version Visualization version GIF version | ||
| Description: Every ordinal maps to a surreal number of that birthday. (Contributed by RP, 21-Sep-2023.) |
| Ref | Expression |
|---|---|
| onnobdayg | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onnog 43411 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) | |
| 2 | bdayval 27566 | . . 3 ⊢ ((𝐴 × {𝐵}) ∈ No → ( bday ‘(𝐴 × {𝐵})) = dom (𝐴 × {𝐵})) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = dom (𝐴 × {𝐵})) |
| 4 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → 𝐵 ∈ {1o, 2o}) | |
| 5 | snnzg 4740 | . . 3 ⊢ (𝐵 ∈ {1o, 2o} → {𝐵} ≠ ∅) | |
| 6 | dmxp 5894 | . . 3 ⊢ ({𝐵} ≠ ∅ → dom (𝐴 × {𝐵}) = 𝐴) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → dom (𝐴 × {𝐵}) = 𝐴) |
| 8 | 3, 7 | eqtrd 2765 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 {csn 4591 {cpr 4593 × cxp 5638 dom cdm 5640 Oncon0 6334 ‘cfv 6513 1oc1o 8429 2oc2o 8430 No csur 27557 bday cbday 27559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-no 27560 df-bday 27562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |