Step | Hyp | Ref
| Expression |
1 | | dv11cn.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
2 | 1 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝐹 Fn 𝑋) |
3 | | dv11cn.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
4 | 3 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝐺 Fn 𝑋) |
5 | | dv11cn.x |
. . . . . 6
⊢ 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅) |
6 | 5 | ovexi 7309 |
. . . . 5
⊢ 𝑋 ∈ V |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ V) |
8 | | inidm 4152 |
. . . 4
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
9 | 2, 4, 7, 7, 8 | offn 7546 |
. . 3
⊢ (𝜑 → (𝐹 ∘f − 𝐺) Fn 𝑋) |
10 | | 0cn 10967 |
. . . 4
⊢ 0 ∈
ℂ |
11 | | fnconstg 6662 |
. . . 4
⊢ (0 ∈
ℂ → (𝑋 ×
{0}) Fn 𝑋) |
12 | 10, 11 | mp1i 13 |
. . 3
⊢ (𝜑 → (𝑋 × {0}) Fn 𝑋) |
13 | | subcl 11220 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) |
14 | 13 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 − 𝑦) ∈ ℂ) |
15 | 14, 1, 3, 7, 7, 8 | off 7551 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘f − 𝐺):𝑋⟶ℂ) |
16 | 15 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f − 𝐺)‘𝑥) ∈ ℂ) |
17 | | dv11cn.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
18 | 17 | anim1ci 616 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) |
19 | | cnxmet 23936 |
. . . . . . . . . . 11
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
20 | | dv11cn.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
21 | | dv11cn.r |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
22 | | blssm 23571 |
. . . . . . . . . . 11
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ −
))𝑅) ⊆
ℂ) |
23 | 19, 20, 21, 22 | mp3an2i 1465 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆
ℂ) |
24 | 5, 23 | eqsstrid 3969 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
25 | 1 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
26 | 3 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℂ) |
27 | 1 | feqmptd 6837 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
28 | 3 | feqmptd 6837 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
29 | 7, 25, 26, 27, 28 | offval2 7553 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ∘f − 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))) |
30 | 29 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℂ D (𝐹 ∘f −
𝐺)) = (ℂ D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥))))) |
31 | | cnelprrecn 10964 |
. . . . . . . . . . . . . . 15
⊢ ℂ
∈ {ℝ, ℂ} |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
33 | | fvexd 6789 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ V) |
34 | 27 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥)))) |
35 | | dvfcn 25072 |
. . . . . . . . . . . . . . . . 17
⊢ (ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ |
36 | | dv11cn.d |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom (ℂ D 𝐹) = 𝑋) |
37 | 36 | feq2d 6586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ
D 𝐹):𝑋⟶ℂ)) |
38 | 35, 37 | mpbii 232 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℂ D 𝐹):𝑋⟶ℂ) |
39 | 38 | feqmptd 6837 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((ℂ D 𝐹)‘𝑥))) |
40 | 34, 39 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((ℂ D 𝐹)‘𝑥))) |
41 | | dv11cn.e |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺)) |
42 | 28 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℂ D 𝐺) = (ℂ D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥)))) |
43 | 41, 39, 42 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((ℂ D 𝐹)‘𝑥))) |
44 | 32, 25, 33, 40, 26, 33, 43 | dvmptsub 25131 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥)))) |
45 | 38 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ ℂ) |
46 | 45 | subidd 11320 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥)) = 0) |
47 | 46 | mpteq2dva 5174 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑥 ∈ 𝑋 ↦ 0)) |
48 | | fconstmpt 5649 |
. . . . . . . . . . . . . 14
⊢ (𝑋 × {0}) = (𝑥 ∈ 𝑋 ↦ 0) |
49 | 47, 48 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑋 × {0})) |
50 | 30, 44, 49 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝐹 ∘f −
𝐺)) = (𝑋 × {0})) |
51 | 50 | dmeqd 5814 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (ℂ D (𝐹 ∘f −
𝐺)) = dom (𝑋 × {0})) |
52 | | snnzg 4710 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℂ → {0} ≠ ∅) |
53 | | dmxp 5838 |
. . . . . . . . . . . 12
⊢ ({0} ≠
∅ → dom (𝑋
× {0}) = 𝑋) |
54 | 10, 52, 53 | mp2b 10 |
. . . . . . . . . . 11
⊢ dom
(𝑋 × {0}) = 𝑋 |
55 | 51, 54 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝜑 → dom (ℂ D (𝐹 ∘f −
𝐺)) = 𝑋) |
56 | | eqimss2 3978 |
. . . . . . . . . 10
⊢ (dom
(ℂ D (𝐹
∘f − 𝐺)) = 𝑋 → 𝑋 ⊆ dom (ℂ D (𝐹 ∘f − 𝐺))) |
57 | 55, 56 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ dom (ℂ D (𝐹 ∘f − 𝐺))) |
58 | | 0red 10978 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
59 | 50 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℂ D (𝐹 ∘f −
𝐺))‘𝑥) = ((𝑋 × {0})‘𝑥)) |
60 | | c0ex 10969 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
61 | 60 | fvconst2 7079 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → ((𝑋 × {0})‘𝑥) = 0) |
62 | 59, 61 | sylan9eq 2798 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((ℂ D (𝐹 ∘f − 𝐺))‘𝑥) = 0) |
63 | 62 | abs00bd 15003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘((ℂ D (𝐹 ∘f −
𝐺))‘𝑥)) = 0) |
64 | | 0le0 12074 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
65 | 63, 64 | eqbrtrdi 5113 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘((ℂ D (𝐹 ∘f −
𝐺))‘𝑥)) ≤ 0) |
66 | 24, 15, 20, 21, 5, 57, 58, 65 | dvlipcn 25158 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘(((𝐹 ∘f − 𝐺)‘𝑥) − ((𝐹 ∘f − 𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥 − 𝐶)))) |
67 | 18, 66 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘(((𝐹 ∘f − 𝐺)‘𝑥) − ((𝐹 ∘f − 𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥 − 𝐶)))) |
68 | 29 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐹 ∘f − 𝐺)‘𝐶) = ((𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))‘𝐶)) |
69 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) |
70 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐶 → (𝐺‘𝑥) = (𝐺‘𝐶)) |
71 | 69, 70 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → ((𝐹‘𝑥) − (𝐺‘𝑥)) = ((𝐹‘𝐶) − (𝐺‘𝐶))) |
72 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥))) |
73 | | ovex 7308 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝐶) − (𝐺‘𝐶)) ∈ V |
74 | 71, 72, 73 | fvmpt 6875 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))‘𝐶) = ((𝐹‘𝐶) − (𝐺‘𝐶))) |
75 | 17, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))‘𝐶) = ((𝐹‘𝐶) − (𝐺‘𝐶))) |
76 | 1, 17 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
77 | | dv11cn.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝐶) = (𝐺‘𝐶)) |
78 | 76, 77 | subeq0bd 11401 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐹‘𝐶) − (𝐺‘𝐶)) = 0) |
79 | 68, 75, 78 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 ∘f − 𝐺)‘𝐶) = 0) |
80 | 79 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f − 𝐺)‘𝐶) = 0) |
81 | 80 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f − 𝐺)‘𝑥) − ((𝐹 ∘f − 𝐺)‘𝐶)) = (((𝐹 ∘f − 𝐺)‘𝑥) − 0)) |
82 | 16 | subid1d 11321 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f − 𝐺)‘𝑥) − 0) = ((𝐹 ∘f − 𝐺)‘𝑥)) |
83 | 81, 82 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f − 𝐺)‘𝑥) − ((𝐹 ∘f − 𝐺)‘𝐶)) = ((𝐹 ∘f − 𝐺)‘𝑥)) |
84 | 83 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘(((𝐹 ∘f − 𝐺)‘𝑥) − ((𝐹 ∘f − 𝐺)‘𝐶))) = (abs‘((𝐹 ∘f − 𝐺)‘𝑥))) |
85 | 24 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
86 | 24, 17 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ℂ) |
87 | 86 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
88 | 85, 87 | subcld 11332 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝐶) ∈ ℂ) |
89 | 88 | abscld 15148 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘(𝑥 − 𝐶)) ∈ ℝ) |
90 | 89 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘(𝑥 − 𝐶)) ∈ ℂ) |
91 | 90 | mul02d 11173 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 · (abs‘(𝑥 − 𝐶))) = 0) |
92 | 67, 84, 91 | 3brtr3d 5105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘((𝐹 ∘f − 𝐺)‘𝑥)) ≤ 0) |
93 | 16 | absge0d 15156 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ≤ (abs‘((𝐹 ∘f −
𝐺)‘𝑥))) |
94 | 16 | abscld 15148 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘((𝐹 ∘f − 𝐺)‘𝑥)) ∈ ℝ) |
95 | | 0re 10977 |
. . . . . . 7
⊢ 0 ∈
ℝ |
96 | | letri3 11060 |
. . . . . . 7
⊢
(((abs‘((𝐹
∘f − 𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((abs‘((𝐹
∘f − 𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹 ∘f − 𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹 ∘f −
𝐺)‘𝑥))))) |
97 | 94, 95, 96 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((abs‘((𝐹 ∘f − 𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹 ∘f − 𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹 ∘f −
𝐺)‘𝑥))))) |
98 | 92, 93, 97 | mpbir2and 710 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘((𝐹 ∘f − 𝐺)‘𝑥)) = 0) |
99 | 16, 98 | abs00d 15158 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f − 𝐺)‘𝑥) = 0) |
100 | 61 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {0})‘𝑥) = 0) |
101 | 99, 100 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝑋 × {0})‘𝑥)) |
102 | 9, 12, 101 | eqfnfvd 6912 |
. 2
⊢ (𝜑 → (𝐹 ∘f − 𝐺) = (𝑋 × {0})) |
103 | | ofsubeq0 11970 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝐹:𝑋⟶ℂ ∧ 𝐺:𝑋⟶ℂ) → ((𝐹 ∘f − 𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺)) |
104 | 6, 1, 3, 103 | mp3an2i 1465 |
. 2
⊢ (𝜑 → ((𝐹 ∘f − 𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺)) |
105 | 102, 104 | mpbid 231 |
1
⊢ (𝜑 → 𝐹 = 𝐺) |