MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dv11cn Structured version   Visualization version   GIF version

Theorem dv11cn 26060
Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point 𝐶 in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dv11cn.x 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
dv11cn.a (𝜑𝐴 ∈ ℂ)
dv11cn.r (𝜑𝑅 ∈ ℝ*)
dv11cn.f (𝜑𝐹:𝑋⟶ℂ)
dv11cn.g (𝜑𝐺:𝑋⟶ℂ)
dv11cn.d (𝜑 → dom (ℂ D 𝐹) = 𝑋)
dv11cn.e (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
dv11cn.c (𝜑𝐶𝑋)
dv11cn.p (𝜑 → (𝐹𝐶) = (𝐺𝐶))
Assertion
Ref Expression
dv11cn (𝜑𝐹 = 𝐺)

Proof of Theorem dv11cn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dv11cn.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21ffnd 6748 . . . 4 (𝜑𝐹 Fn 𝑋)
3 dv11cn.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
43ffnd 6748 . . . 4 (𝜑𝐺 Fn 𝑋)
5 dv11cn.x . . . . . 6 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
65ovexi 7482 . . . . 5 𝑋 ∈ V
76a1i 11 . . . 4 (𝜑𝑋 ∈ V)
8 inidm 4248 . . . 4 (𝑋𝑋) = 𝑋
92, 4, 7, 7, 8offn 7727 . . 3 (𝜑 → (𝐹f𝐺) Fn 𝑋)
10 0cn 11282 . . . 4 0 ∈ ℂ
11 fnconstg 6809 . . . 4 (0 ∈ ℂ → (𝑋 × {0}) Fn 𝑋)
1210, 11mp1i 13 . . 3 (𝜑 → (𝑋 × {0}) Fn 𝑋)
13 subcl 11535 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
1413adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑦) ∈ ℂ)
1514, 1, 3, 7, 7, 8off 7732 . . . . . 6 (𝜑 → (𝐹f𝐺):𝑋⟶ℂ)
1615ffvelcdmda 7118 . . . . 5 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) ∈ ℂ)
17 dv11cn.c . . . . . . . . 9 (𝜑𝐶𝑋)
1817anim1ci 615 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝑋𝐶𝑋))
19 cnxmet 24814 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
20 dv11cn.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
21 dv11cn.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ*)
22 blssm 24449 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2319, 20, 21, 22mp3an2i 1466 . . . . . . . . . 10 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
245, 23eqsstrid 4057 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
251ffvelcdmda 7118 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
263ffvelcdmda 7118 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
271feqmptd 6990 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
283feqmptd 6990 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
297, 25, 26, 27, 28offval2 7734 . . . . . . . . . . . . . 14 (𝜑 → (𝐹f𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))))
3029oveq2d 7464 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝐹f𝐺)) = (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))))
31 cnelprrecn 11277 . . . . . . . . . . . . . . 15 ℂ ∈ {ℝ, ℂ}
3231a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ∈ {ℝ, ℂ})
33 fvexd 6935 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ V)
3427oveq2d 7464 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))))
35 dvfcn 25963 . . . . . . . . . . . . . . . . 17 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
36 dv11cn.d . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (ℂ D 𝐹) = 𝑋)
3736feq2d 6733 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑋⟶ℂ))
3835, 37mpbii 233 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D 𝐹):𝑋⟶ℂ)
3938feqmptd 6990 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4034, 39eqtr3d 2782 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
41 dv11cn.e . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
4228oveq2d 7464 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐺) = (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))))
4341, 39, 423eqtr3rd 2789 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4432, 25, 33, 40, 26, 33, 43dvmptsub 26025 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))) = (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))))
4538ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ ℂ)
4645subidd 11635 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥)) = 0)
4746mpteq2dva 5266 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ 0))
48 fconstmpt 5762 . . . . . . . . . . . . . 14 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
4947, 48eqtr4di 2798 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑋 × {0}))
5030, 44, 493eqtrd 2784 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝐹f𝐺)) = (𝑋 × {0}))
5150dmeqd 5930 . . . . . . . . . . 11 (𝜑 → dom (ℂ D (𝐹f𝐺)) = dom (𝑋 × {0}))
52 snnzg 4799 . . . . . . . . . . . 12 (0 ∈ ℂ → {0} ≠ ∅)
53 dmxp 5953 . . . . . . . . . . . 12 ({0} ≠ ∅ → dom (𝑋 × {0}) = 𝑋)
5410, 52, 53mp2b 10 . . . . . . . . . . 11 dom (𝑋 × {0}) = 𝑋
5551, 54eqtrdi 2796 . . . . . . . . . 10 (𝜑 → dom (ℂ D (𝐹f𝐺)) = 𝑋)
56 eqimss2 4068 . . . . . . . . . 10 (dom (ℂ D (𝐹f𝐺)) = 𝑋𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
5755, 56syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
58 0red 11293 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5950fveq1d 6922 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝐹f𝐺))‘𝑥) = ((𝑋 × {0})‘𝑥))
60 c0ex 11284 . . . . . . . . . . . . 13 0 ∈ V
6160fvconst2 7241 . . . . . . . . . . . 12 (𝑥𝑋 → ((𝑋 × {0})‘𝑥) = 0)
6259, 61sylan9eq 2800 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((ℂ D (𝐹f𝐺))‘𝑥) = 0)
6362abs00bd 15340 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) = 0)
64 0le0 12394 . . . . . . . . . 10 0 ≤ 0
6563, 64eqbrtrdi 5205 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) ≤ 0)
6624, 15, 20, 21, 5, 57, 58, 65dvlipcn 26053 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝐶𝑋)) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6718, 66syldan 590 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6829fveq1d 6922 . . . . . . . . . . . 12 (𝜑 → ((𝐹f𝐺)‘𝐶) = ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶))
69 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
70 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐺𝑥) = (𝐺𝐶))
7169, 70oveq12d 7466 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝐶) − (𝐺𝐶)))
72 eqid 2740 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))
73 ovex 7481 . . . . . . . . . . . . . 14 ((𝐹𝐶) − (𝐺𝐶)) ∈ V
7471, 72, 73fvmpt 7029 . . . . . . . . . . . . 13 (𝐶𝑋 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
7517, 74syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
761, 17ffvelcdmd 7119 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) ∈ ℂ)
77 dv11cn.p . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) = (𝐺𝐶))
7876, 77subeq0bd 11716 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐶) − (𝐺𝐶)) = 0)
7968, 75, 783eqtrd 2784 . . . . . . . . . . 11 (𝜑 → ((𝐹f𝐺)‘𝐶) = 0)
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝐶) = 0)
8180oveq2d 7464 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = (((𝐹f𝐺)‘𝑥) − 0))
8216subid1d 11636 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − 0) = ((𝐹f𝐺)‘𝑥))
8381, 82eqtrd 2780 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = ((𝐹f𝐺)‘𝑥))
8483fveq2d 6924 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) = (abs‘((𝐹f𝐺)‘𝑥)))
8524sselda 4008 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
8624, 17sseldd 4009 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8786adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
8885, 87subcld 11647 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥𝐶) ∈ ℂ)
8988abscld 15485 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℝ)
9089recnd 11318 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℂ)
9190mul02d 11488 . . . . . . 7 ((𝜑𝑥𝑋) → (0 · (abs‘(𝑥𝐶))) = 0)
9267, 84, 913brtr3d 5197 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ≤ 0)
9316absge0d 15493 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))
9416abscld 15485 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ)
95 0re 11292 . . . . . . 7 0 ∈ ℝ
96 letri3 11375 . . . . . . 7 (((abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9794, 95, 96sylancl 585 . . . . . 6 ((𝜑𝑥𝑋) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9892, 93, 97mpbir2and 712 . . . . 5 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) = 0)
9916, 98abs00d 15495 . . . 4 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = 0)
10061adantl 481 . . . 4 ((𝜑𝑥𝑋) → ((𝑋 × {0})‘𝑥) = 0)
10199, 100eqtr4d 2783 . . 3 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = ((𝑋 × {0})‘𝑥))
1029, 12, 101eqfnfvd 7067 . 2 (𝜑 → (𝐹f𝐺) = (𝑋 × {0}))
103 ofsubeq0 12290 . . 3 ((𝑋 ∈ V ∧ 𝐹:𝑋⟶ℂ ∧ 𝐺:𝑋⟶ℂ) → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
1046, 1, 3, 103mp3an2i 1466 . 2 (𝜑 → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
105102, 104mpbid 232 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  cr 11183  0cc0 11184   · cmul 11189  *cxr 11323  cle 11325  cmin 11520  abscabs 15283  ∞Metcxmet 21372  ballcbl 21374   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  logtayl  26720  binomcxplemnotnn0  44325
  Copyright terms: Public domain W3C validator