Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dv11cn Structured version   Visualization version   GIF version

Theorem dv11cn 24693
 Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point 𝐶 in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dv11cn.x 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
dv11cn.a (𝜑𝐴 ∈ ℂ)
dv11cn.r (𝜑𝑅 ∈ ℝ*)
dv11cn.f (𝜑𝐹:𝑋⟶ℂ)
dv11cn.g (𝜑𝐺:𝑋⟶ℂ)
dv11cn.d (𝜑 → dom (ℂ D 𝐹) = 𝑋)
dv11cn.e (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
dv11cn.c (𝜑𝐶𝑋)
dv11cn.p (𝜑 → (𝐹𝐶) = (𝐺𝐶))
Assertion
Ref Expression
dv11cn (𝜑𝐹 = 𝐺)

Proof of Theorem dv11cn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dv11cn.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21ffnd 6500 . . . 4 (𝜑𝐹 Fn 𝑋)
3 dv11cn.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
43ffnd 6500 . . . 4 (𝜑𝐺 Fn 𝑋)
5 dv11cn.x . . . . . 6 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
65ovexi 7185 . . . . 5 𝑋 ∈ V
76a1i 11 . . . 4 (𝜑𝑋 ∈ V)
8 inidm 4124 . . . 4 (𝑋𝑋) = 𝑋
92, 4, 7, 7, 8offn 7418 . . 3 (𝜑 → (𝐹f𝐺) Fn 𝑋)
10 0cn 10664 . . . 4 0 ∈ ℂ
11 fnconstg 6553 . . . 4 (0 ∈ ℂ → (𝑋 × {0}) Fn 𝑋)
1210, 11mp1i 13 . . 3 (𝜑 → (𝑋 × {0}) Fn 𝑋)
13 subcl 10916 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
1413adantl 486 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑦) ∈ ℂ)
1514, 1, 3, 7, 7, 8off 7423 . . . . . 6 (𝜑 → (𝐹f𝐺):𝑋⟶ℂ)
1615ffvelrnda 6843 . . . . 5 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) ∈ ℂ)
17 dv11cn.c . . . . . . . . 9 (𝜑𝐶𝑋)
1817anim1ci 619 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝑋𝐶𝑋))
19 cnxmet 23467 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
20 dv11cn.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
21 dv11cn.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ*)
22 blssm 23113 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2319, 20, 21, 22mp3an2i 1464 . . . . . . . . . 10 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
245, 23eqsstrid 3941 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
251ffvelrnda 6843 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
263ffvelrnda 6843 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
271feqmptd 6722 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
283feqmptd 6722 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
297, 25, 26, 27, 28offval2 7425 . . . . . . . . . . . . . 14 (𝜑 → (𝐹f𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))))
3029oveq2d 7167 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝐹f𝐺)) = (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))))
31 cnelprrecn 10661 . . . . . . . . . . . . . . 15 ℂ ∈ {ℝ, ℂ}
3231a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ∈ {ℝ, ℂ})
33 fvexd 6674 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ V)
3427oveq2d 7167 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))))
35 dvfcn 24600 . . . . . . . . . . . . . . . . 17 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
36 dv11cn.d . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (ℂ D 𝐹) = 𝑋)
3736feq2d 6485 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑋⟶ℂ))
3835, 37mpbii 236 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D 𝐹):𝑋⟶ℂ)
3938feqmptd 6722 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4034, 39eqtr3d 2796 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
41 dv11cn.e . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
4228oveq2d 7167 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐺) = (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))))
4341, 39, 423eqtr3rd 2803 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4432, 25, 33, 40, 26, 33, 43dvmptsub 24659 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))) = (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))))
4538ffvelrnda 6843 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ ℂ)
4645subidd 11016 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥)) = 0)
4746mpteq2dva 5128 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ 0))
48 fconstmpt 5584 . . . . . . . . . . . . . 14 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
4947, 48eqtr4di 2812 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑋 × {0}))
5030, 44, 493eqtrd 2798 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝐹f𝐺)) = (𝑋 × {0}))
5150dmeqd 5746 . . . . . . . . . . 11 (𝜑 → dom (ℂ D (𝐹f𝐺)) = dom (𝑋 × {0}))
52 snnzg 4668 . . . . . . . . . . . 12 (0 ∈ ℂ → {0} ≠ ∅)
53 dmxp 5771 . . . . . . . . . . . 12 ({0} ≠ ∅ → dom (𝑋 × {0}) = 𝑋)
5410, 52, 53mp2b 10 . . . . . . . . . . 11 dom (𝑋 × {0}) = 𝑋
5551, 54eqtrdi 2810 . . . . . . . . . 10 (𝜑 → dom (ℂ D (𝐹f𝐺)) = 𝑋)
56 eqimss2 3950 . . . . . . . . . 10 (dom (ℂ D (𝐹f𝐺)) = 𝑋𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
5755, 56syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
58 0red 10675 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5950fveq1d 6661 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝐹f𝐺))‘𝑥) = ((𝑋 × {0})‘𝑥))
60 c0ex 10666 . . . . . . . . . . . . 13 0 ∈ V
6160fvconst2 6958 . . . . . . . . . . . 12 (𝑥𝑋 → ((𝑋 × {0})‘𝑥) = 0)
6259, 61sylan9eq 2814 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((ℂ D (𝐹f𝐺))‘𝑥) = 0)
6362abs00bd 14692 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) = 0)
64 0le0 11768 . . . . . . . . . 10 0 ≤ 0
6563, 64eqbrtrdi 5072 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) ≤ 0)
6624, 15, 20, 21, 5, 57, 58, 65dvlipcn 24686 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝐶𝑋)) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6718, 66syldan 595 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6829fveq1d 6661 . . . . . . . . . . . 12 (𝜑 → ((𝐹f𝐺)‘𝐶) = ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶))
69 fveq2 6659 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
70 fveq2 6659 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐺𝑥) = (𝐺𝐶))
7169, 70oveq12d 7169 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝐶) − (𝐺𝐶)))
72 eqid 2759 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))
73 ovex 7184 . . . . . . . . . . . . . 14 ((𝐹𝐶) − (𝐺𝐶)) ∈ V
7471, 72, 73fvmpt 6760 . . . . . . . . . . . . 13 (𝐶𝑋 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
7517, 74syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
761, 17ffvelrnd 6844 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) ∈ ℂ)
77 dv11cn.p . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) = (𝐺𝐶))
7876, 77subeq0bd 11097 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐶) − (𝐺𝐶)) = 0)
7968, 75, 783eqtrd 2798 . . . . . . . . . . 11 (𝜑 → ((𝐹f𝐺)‘𝐶) = 0)
8079adantr 485 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝐶) = 0)
8180oveq2d 7167 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = (((𝐹f𝐺)‘𝑥) − 0))
8216subid1d 11017 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − 0) = ((𝐹f𝐺)‘𝑥))
8381, 82eqtrd 2794 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = ((𝐹f𝐺)‘𝑥))
8483fveq2d 6663 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) = (abs‘((𝐹f𝐺)‘𝑥)))
8524sselda 3893 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
8624, 17sseldd 3894 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8786adantr 485 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
8885, 87subcld 11028 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥𝐶) ∈ ℂ)
8988abscld 14837 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℝ)
9089recnd 10700 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℂ)
9190mul02d 10869 . . . . . . 7 ((𝜑𝑥𝑋) → (0 · (abs‘(𝑥𝐶))) = 0)
9267, 84, 913brtr3d 5064 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ≤ 0)
9316absge0d 14845 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))
9416abscld 14837 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ)
95 0re 10674 . . . . . . 7 0 ∈ ℝ
96 letri3 10757 . . . . . . 7 (((abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9794, 95, 96sylancl 590 . . . . . 6 ((𝜑𝑥𝑋) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9892, 93, 97mpbir2and 713 . . . . 5 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) = 0)
9916, 98abs00d 14847 . . . 4 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = 0)
10061adantl 486 . . . 4 ((𝜑𝑥𝑋) → ((𝑋 × {0})‘𝑥) = 0)
10199, 100eqtr4d 2797 . . 3 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = ((𝑋 × {0})‘𝑥))
1029, 12, 101eqfnfvd 6797 . 2 (𝜑 → (𝐹f𝐺) = (𝑋 × {0}))
103 ofsubeq0 11664 . . 3 ((𝑋 ∈ V ∧ 𝐹:𝑋⟶ℂ ∧ 𝐺:𝑋⟶ℂ) → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
1046, 1, 3, 103mp3an2i 1464 . 2 (𝜑 → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
105102, 104mpbid 235 1 (𝜑𝐹 = 𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  Vcvv 3410   ⊆ wss 3859  ∅c0 4226  {csn 4523  {cpr 4525   class class class wbr 5033   ↦ cmpt 5113   × cxp 5523  dom cdm 5525   ∘ ccom 5529   Fn wfn 6331  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151   ∘f cof 7404  ℂcc 10566  ℝcr 10567  0cc0 10568   · cmul 10573  ℝ*cxr 10705   ≤ cle 10707   − cmin 10901  abscabs 14634  ∞Metcxmet 20144  ballcbl 20146   D cdv 24555 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-fi 8901  df-sup 8932  df-inf 8933  df-oi 9000  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-rest 16747  df-topn 16748  df-0g 16766  df-gsum 16767  df-topgen 16768  df-pt 16769  df-prds 16772  df-xrs 16826  df-qtop 16831  df-imas 16832  df-xps 16834  df-mre 16908  df-mrc 16909  df-acs 16911  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-mulg 18285  df-cntz 18507  df-cmn 18968  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-fbas 20156  df-fg 20157  df-cnfld 20160  df-top 21587  df-topon 21604  df-topsp 21626  df-bases 21639  df-cld 21712  df-ntr 21713  df-cls 21714  df-nei 21791  df-lp 21829  df-perf 21830  df-cn 21920  df-cnp 21921  df-haus 22008  df-cmp 22080  df-tx 22255  df-hmeo 22448  df-fil 22539  df-fm 22631  df-flim 22632  df-flf 22633  df-xms 23015  df-ms 23016  df-tms 23017  df-cncf 23572  df-limc 24558  df-dv 24559 This theorem is referenced by:  logtayl  25343  binomcxplemnotnn0  41426
 Copyright terms: Public domain W3C validator