MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dv11cn Structured version   Visualization version   GIF version

Theorem dv11cn 25958
Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point 𝐶 in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dv11cn.x 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
dv11cn.a (𝜑𝐴 ∈ ℂ)
dv11cn.r (𝜑𝑅 ∈ ℝ*)
dv11cn.f (𝜑𝐹:𝑋⟶ℂ)
dv11cn.g (𝜑𝐺:𝑋⟶ℂ)
dv11cn.d (𝜑 → dom (ℂ D 𝐹) = 𝑋)
dv11cn.e (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
dv11cn.c (𝜑𝐶𝑋)
dv11cn.p (𝜑 → (𝐹𝐶) = (𝐺𝐶))
Assertion
Ref Expression
dv11cn (𝜑𝐹 = 𝐺)

Proof of Theorem dv11cn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dv11cn.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21ffnd 6707 . . . 4 (𝜑𝐹 Fn 𝑋)
3 dv11cn.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
43ffnd 6707 . . . 4 (𝜑𝐺 Fn 𝑋)
5 dv11cn.x . . . . . 6 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
65ovexi 7439 . . . . 5 𝑋 ∈ V
76a1i 11 . . . 4 (𝜑𝑋 ∈ V)
8 inidm 4202 . . . 4 (𝑋𝑋) = 𝑋
92, 4, 7, 7, 8offn 7684 . . 3 (𝜑 → (𝐹f𝐺) Fn 𝑋)
10 0cn 11227 . . . 4 0 ∈ ℂ
11 fnconstg 6766 . . . 4 (0 ∈ ℂ → (𝑋 × {0}) Fn 𝑋)
1210, 11mp1i 13 . . 3 (𝜑 → (𝑋 × {0}) Fn 𝑋)
13 subcl 11481 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
1413adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑦) ∈ ℂ)
1514, 1, 3, 7, 7, 8off 7689 . . . . . 6 (𝜑 → (𝐹f𝐺):𝑋⟶ℂ)
1615ffvelcdmda 7074 . . . . 5 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) ∈ ℂ)
17 dv11cn.c . . . . . . . . 9 (𝜑𝐶𝑋)
1817anim1ci 616 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝑋𝐶𝑋))
19 cnxmet 24711 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
20 dv11cn.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
21 dv11cn.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ*)
22 blssm 24357 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2319, 20, 21, 22mp3an2i 1468 . . . . . . . . . 10 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
245, 23eqsstrid 3997 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
251ffvelcdmda 7074 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
263ffvelcdmda 7074 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
271feqmptd 6947 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
283feqmptd 6947 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
297, 25, 26, 27, 28offval2 7691 . . . . . . . . . . . . . 14 (𝜑 → (𝐹f𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))))
3029oveq2d 7421 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝐹f𝐺)) = (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))))
31 cnelprrecn 11222 . . . . . . . . . . . . . . 15 ℂ ∈ {ℝ, ℂ}
3231a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ∈ {ℝ, ℂ})
33 fvexd 6891 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ V)
3427oveq2d 7421 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))))
35 dvfcn 25861 . . . . . . . . . . . . . . . . 17 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
36 dv11cn.d . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (ℂ D 𝐹) = 𝑋)
3736feq2d 6692 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑋⟶ℂ))
3835, 37mpbii 233 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D 𝐹):𝑋⟶ℂ)
3938feqmptd 6947 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4034, 39eqtr3d 2772 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
41 dv11cn.e . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
4228oveq2d 7421 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐺) = (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))))
4341, 39, 423eqtr3rd 2779 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4432, 25, 33, 40, 26, 33, 43dvmptsub 25923 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))) = (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))))
4538ffvelcdmda 7074 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ ℂ)
4645subidd 11582 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥)) = 0)
4746mpteq2dva 5214 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ 0))
48 fconstmpt 5716 . . . . . . . . . . . . . 14 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
4947, 48eqtr4di 2788 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑋 × {0}))
5030, 44, 493eqtrd 2774 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝐹f𝐺)) = (𝑋 × {0}))
5150dmeqd 5885 . . . . . . . . . . 11 (𝜑 → dom (ℂ D (𝐹f𝐺)) = dom (𝑋 × {0}))
52 snnzg 4750 . . . . . . . . . . . 12 (0 ∈ ℂ → {0} ≠ ∅)
53 dmxp 5908 . . . . . . . . . . . 12 ({0} ≠ ∅ → dom (𝑋 × {0}) = 𝑋)
5410, 52, 53mp2b 10 . . . . . . . . . . 11 dom (𝑋 × {0}) = 𝑋
5551, 54eqtrdi 2786 . . . . . . . . . 10 (𝜑 → dom (ℂ D (𝐹f𝐺)) = 𝑋)
56 eqimss2 4018 . . . . . . . . . 10 (dom (ℂ D (𝐹f𝐺)) = 𝑋𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
5755, 56syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
58 0red 11238 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5950fveq1d 6878 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝐹f𝐺))‘𝑥) = ((𝑋 × {0})‘𝑥))
60 c0ex 11229 . . . . . . . . . . . . 13 0 ∈ V
6160fvconst2 7196 . . . . . . . . . . . 12 (𝑥𝑋 → ((𝑋 × {0})‘𝑥) = 0)
6259, 61sylan9eq 2790 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((ℂ D (𝐹f𝐺))‘𝑥) = 0)
6362abs00bd 15310 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) = 0)
64 0le0 12341 . . . . . . . . . 10 0 ≤ 0
6563, 64eqbrtrdi 5158 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) ≤ 0)
6624, 15, 20, 21, 5, 57, 58, 65dvlipcn 25951 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝐶𝑋)) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6718, 66syldan 591 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6829fveq1d 6878 . . . . . . . . . . . 12 (𝜑 → ((𝐹f𝐺)‘𝐶) = ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶))
69 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
70 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐺𝑥) = (𝐺𝐶))
7169, 70oveq12d 7423 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝐶) − (𝐺𝐶)))
72 eqid 2735 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))
73 ovex 7438 . . . . . . . . . . . . . 14 ((𝐹𝐶) − (𝐺𝐶)) ∈ V
7471, 72, 73fvmpt 6986 . . . . . . . . . . . . 13 (𝐶𝑋 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
7517, 74syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
761, 17ffvelcdmd 7075 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) ∈ ℂ)
77 dv11cn.p . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) = (𝐺𝐶))
7876, 77subeq0bd 11663 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐶) − (𝐺𝐶)) = 0)
7968, 75, 783eqtrd 2774 . . . . . . . . . . 11 (𝜑 → ((𝐹f𝐺)‘𝐶) = 0)
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝐶) = 0)
8180oveq2d 7421 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = (((𝐹f𝐺)‘𝑥) − 0))
8216subid1d 11583 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − 0) = ((𝐹f𝐺)‘𝑥))
8381, 82eqtrd 2770 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = ((𝐹f𝐺)‘𝑥))
8483fveq2d 6880 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) = (abs‘((𝐹f𝐺)‘𝑥)))
8524sselda 3958 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
8624, 17sseldd 3959 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8786adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
8885, 87subcld 11594 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥𝐶) ∈ ℂ)
8988abscld 15455 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℝ)
9089recnd 11263 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℂ)
9190mul02d 11433 . . . . . . 7 ((𝜑𝑥𝑋) → (0 · (abs‘(𝑥𝐶))) = 0)
9267, 84, 913brtr3d 5150 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ≤ 0)
9316absge0d 15463 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))
9416abscld 15455 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ)
95 0re 11237 . . . . . . 7 0 ∈ ℝ
96 letri3 11320 . . . . . . 7 (((abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9794, 95, 96sylancl 586 . . . . . 6 ((𝜑𝑥𝑋) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9892, 93, 97mpbir2and 713 . . . . 5 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) = 0)
9916, 98abs00d 15465 . . . 4 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = 0)
10061adantl 481 . . . 4 ((𝜑𝑥𝑋) → ((𝑋 × {0})‘𝑥) = 0)
10199, 100eqtr4d 2773 . . 3 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = ((𝑋 × {0})‘𝑥))
1029, 12, 101eqfnfvd 7024 . 2 (𝜑 → (𝐹f𝐺) = (𝑋 × {0}))
103 ofsubeq0 12237 . . 3 ((𝑋 ∈ V ∧ 𝐹:𝑋⟶ℂ ∧ 𝐺:𝑋⟶ℂ) → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
1046, 1, 3, 103mp3an2i 1468 . 2 (𝜑 → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
105102, 104mpbid 232 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  wss 3926  c0 4308  {csn 4601  {cpr 4603   class class class wbr 5119  cmpt 5201   × cxp 5652  dom cdm 5654  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  cc 11127  cr 11128  0cc0 11129   · cmul 11134  *cxr 11268  cle 11270  cmin 11466  abscabs 15253  ∞Metcxmet 21300  ballcbl 21302   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  logtayl  26621  binomcxplemnotnn0  44380
  Copyright terms: Public domain W3C validator