MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dv11cn Structured version   Visualization version   GIF version

Theorem dv11cn 24604
Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point 𝐶 in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dv11cn.x 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
dv11cn.a (𝜑𝐴 ∈ ℂ)
dv11cn.r (𝜑𝑅 ∈ ℝ*)
dv11cn.f (𝜑𝐹:𝑋⟶ℂ)
dv11cn.g (𝜑𝐺:𝑋⟶ℂ)
dv11cn.d (𝜑 → dom (ℂ D 𝐹) = 𝑋)
dv11cn.e (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
dv11cn.c (𝜑𝐶𝑋)
dv11cn.p (𝜑 → (𝐹𝐶) = (𝐺𝐶))
Assertion
Ref Expression
dv11cn (𝜑𝐹 = 𝐺)

Proof of Theorem dv11cn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dv11cn.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21ffnd 6488 . . . 4 (𝜑𝐹 Fn 𝑋)
3 dv11cn.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
43ffnd 6488 . . . 4 (𝜑𝐺 Fn 𝑋)
5 dv11cn.x . . . . . 6 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
65ovexi 7169 . . . . 5 𝑋 ∈ V
76a1i 11 . . . 4 (𝜑𝑋 ∈ V)
8 inidm 4145 . . . 4 (𝑋𝑋) = 𝑋
92, 4, 7, 7, 8offn 7400 . . 3 (𝜑 → (𝐹f𝐺) Fn 𝑋)
10 0cn 10622 . . . 4 0 ∈ ℂ
11 fnconstg 6541 . . . 4 (0 ∈ ℂ → (𝑋 × {0}) Fn 𝑋)
1210, 11mp1i 13 . . 3 (𝜑 → (𝑋 × {0}) Fn 𝑋)
13 subcl 10874 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
1413adantl 485 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑦) ∈ ℂ)
1514, 1, 3, 7, 7, 8off 7404 . . . . . 6 (𝜑 → (𝐹f𝐺):𝑋⟶ℂ)
1615ffvelrnda 6828 . . . . 5 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) ∈ ℂ)
17 dv11cn.c . . . . . . . . 9 (𝜑𝐶𝑋)
1817anim1ci 618 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝑋𝐶𝑋))
19 cnxmet 23378 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
20 dv11cn.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
21 dv11cn.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ*)
22 blssm 23025 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2319, 20, 21, 22mp3an2i 1463 . . . . . . . . . 10 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
245, 23eqsstrid 3963 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
251ffvelrnda 6828 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
263ffvelrnda 6828 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
271feqmptd 6708 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
283feqmptd 6708 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
297, 25, 26, 27, 28offval2 7406 . . . . . . . . . . . . . 14 (𝜑 → (𝐹f𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))))
3029oveq2d 7151 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝐹f𝐺)) = (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))))
31 cnelprrecn 10619 . . . . . . . . . . . . . . 15 ℂ ∈ {ℝ, ℂ}
3231a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ∈ {ℝ, ℂ})
33 fvexd 6660 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ V)
3427oveq2d 7151 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))))
35 dvfcn 24511 . . . . . . . . . . . . . . . . 17 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
36 dv11cn.d . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (ℂ D 𝐹) = 𝑋)
3736feq2d 6473 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑋⟶ℂ))
3835, 37mpbii 236 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D 𝐹):𝑋⟶ℂ)
3938feqmptd 6708 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4034, 39eqtr3d 2835 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
41 dv11cn.e . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
4228oveq2d 7151 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐺) = (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))))
4341, 39, 423eqtr3rd 2842 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4432, 25, 33, 40, 26, 33, 43dvmptsub 24570 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))) = (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))))
4538ffvelrnda 6828 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ ℂ)
4645subidd 10974 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥)) = 0)
4746mpteq2dva 5125 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ 0))
48 fconstmpt 5578 . . . . . . . . . . . . . 14 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
4947, 48eqtr4di 2851 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑋 × {0}))
5030, 44, 493eqtrd 2837 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝐹f𝐺)) = (𝑋 × {0}))
5150dmeqd 5738 . . . . . . . . . . 11 (𝜑 → dom (ℂ D (𝐹f𝐺)) = dom (𝑋 × {0}))
52 snnzg 4670 . . . . . . . . . . . 12 (0 ∈ ℂ → {0} ≠ ∅)
53 dmxp 5763 . . . . . . . . . . . 12 ({0} ≠ ∅ → dom (𝑋 × {0}) = 𝑋)
5410, 52, 53mp2b 10 . . . . . . . . . . 11 dom (𝑋 × {0}) = 𝑋
5551, 54eqtrdi 2849 . . . . . . . . . 10 (𝜑 → dom (ℂ D (𝐹f𝐺)) = 𝑋)
56 eqimss2 3972 . . . . . . . . . 10 (dom (ℂ D (𝐹f𝐺)) = 𝑋𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
5755, 56syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
58 0red 10633 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5950fveq1d 6647 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝐹f𝐺))‘𝑥) = ((𝑋 × {0})‘𝑥))
60 c0ex 10624 . . . . . . . . . . . . 13 0 ∈ V
6160fvconst2 6943 . . . . . . . . . . . 12 (𝑥𝑋 → ((𝑋 × {0})‘𝑥) = 0)
6259, 61sylan9eq 2853 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((ℂ D (𝐹f𝐺))‘𝑥) = 0)
6362abs00bd 14643 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) = 0)
64 0le0 11726 . . . . . . . . . 10 0 ≤ 0
6563, 64eqbrtrdi 5069 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) ≤ 0)
6624, 15, 20, 21, 5, 57, 58, 65dvlipcn 24597 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝐶𝑋)) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6718, 66syldan 594 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6829fveq1d 6647 . . . . . . . . . . . 12 (𝜑 → ((𝐹f𝐺)‘𝐶) = ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶))
69 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
70 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐺𝑥) = (𝐺𝐶))
7169, 70oveq12d 7153 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝐶) − (𝐺𝐶)))
72 eqid 2798 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))
73 ovex 7168 . . . . . . . . . . . . . 14 ((𝐹𝐶) − (𝐺𝐶)) ∈ V
7471, 72, 73fvmpt 6745 . . . . . . . . . . . . 13 (𝐶𝑋 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
7517, 74syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
761, 17ffvelrnd 6829 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) ∈ ℂ)
77 dv11cn.p . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) = (𝐺𝐶))
7876, 77subeq0bd 11055 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐶) − (𝐺𝐶)) = 0)
7968, 75, 783eqtrd 2837 . . . . . . . . . . 11 (𝜑 → ((𝐹f𝐺)‘𝐶) = 0)
8079adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝐶) = 0)
8180oveq2d 7151 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = (((𝐹f𝐺)‘𝑥) − 0))
8216subid1d 10975 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − 0) = ((𝐹f𝐺)‘𝑥))
8381, 82eqtrd 2833 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = ((𝐹f𝐺)‘𝑥))
8483fveq2d 6649 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) = (abs‘((𝐹f𝐺)‘𝑥)))
8524sselda 3915 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
8624, 17sseldd 3916 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8786adantr 484 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
8885, 87subcld 10986 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥𝐶) ∈ ℂ)
8988abscld 14788 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℝ)
9089recnd 10658 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℂ)
9190mul02d 10827 . . . . . . 7 ((𝜑𝑥𝑋) → (0 · (abs‘(𝑥𝐶))) = 0)
9267, 84, 913brtr3d 5061 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ≤ 0)
9316absge0d 14796 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))
9416abscld 14788 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ)
95 0re 10632 . . . . . . 7 0 ∈ ℝ
96 letri3 10715 . . . . . . 7 (((abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9794, 95, 96sylancl 589 . . . . . 6 ((𝜑𝑥𝑋) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9892, 93, 97mpbir2and 712 . . . . 5 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) = 0)
9916, 98abs00d 14798 . . . 4 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = 0)
10061adantl 485 . . . 4 ((𝜑𝑥𝑋) → ((𝑋 × {0})‘𝑥) = 0)
10199, 100eqtr4d 2836 . . 3 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = ((𝑋 × {0})‘𝑥))
1029, 12, 101eqfnfvd 6782 . 2 (𝜑 → (𝐹f𝐺) = (𝑋 × {0}))
103 ofsubeq0 11622 . . 3 ((𝑋 ∈ V ∧ 𝐹:𝑋⟶ℂ ∧ 𝐺:𝑋⟶ℂ) → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
1046, 1, 3, 103mp3an2i 1463 . 2 (𝜑 → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
105102, 104mpbid 235 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  wss 3881  c0 4243  {csn 4525  {cpr 4527   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cc 10524  cr 10525  0cc0 10526   · cmul 10531  *cxr 10663  cle 10665  cmin 10859  abscabs 14585  ∞Metcxmet 20076  ballcbl 20078   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  logtayl  25251  binomcxplemnotnn0  41060
  Copyright terms: Public domain W3C validator