| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onnog | Structured version Visualization version GIF version | ||
| Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
| Ref | Expression |
|---|---|
| onnog | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6g 6749 | . . 3 ⊢ (𝐵 ∈ {1o, 2o} → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) |
| 3 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) | |
| 4 | 3 | ffund 6692 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → Fun (𝐴 × {𝐵})) |
| 5 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐵 ∈ {1o, 2o}) | |
| 6 | snnzg 4738 | . . . . 5 ⊢ (𝐵 ∈ {1o, 2o} → {𝐵} ≠ ∅) | |
| 7 | dmxp 5892 | . . . . . 6 ⊢ ({𝐵} ≠ ∅ → dom (𝐴 × {𝐵}) = 𝐴) | |
| 8 | 7 | eqcomd 2735 | . . . . 5 ⊢ ({𝐵} ≠ ∅ → 𝐴 = dom (𝐴 × {𝐵})) |
| 9 | 5, 6, 8 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 = dom (𝐴 × {𝐵})) |
| 10 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 ∈ On) | |
| 11 | 9, 10 | eqeltrrd 2829 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → dom (𝐴 × {𝐵}) ∈ On) |
| 12 | 3 | frnd 6696 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → ran (𝐴 × {𝐵}) ⊆ {1o, 2o}) |
| 13 | elno2 27566 | . . 3 ⊢ ((𝐴 × {𝐵}) ∈ No ↔ (Fun (𝐴 × {𝐵}) ∧ dom (𝐴 × {𝐵}) ∈ On ∧ ran (𝐴 × {𝐵}) ⊆ {1o, 2o})) | |
| 14 | 4, 11, 12, 13 | syl3anbrc 1344 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
| 15 | 2, 14 | mpd3an3 1464 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 {csn 4589 {cpr 4591 × cxp 5636 dom cdm 5638 ran crn 5639 Oncon0 6332 Fun wfun 6505 ⟶wf 6507 1oc1o 8427 2oc2o 8428 No csur 27551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-no 27554 |
| This theorem is referenced by: onnobdayg 43419 bdaybndex 43420 onno 43422 |
| Copyright terms: Public domain | W3C validator |