![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onnog | Structured version Visualization version GIF version |
Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
Ref | Expression |
---|---|
onnog | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6798 | . . 3 ⊢ (𝐵 ∈ {1o, 2o} → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) |
3 | simp3 1137 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) | |
4 | 3 | ffund 6741 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → Fun (𝐴 × {𝐵})) |
5 | simp2 1136 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐵 ∈ {1o, 2o}) | |
6 | snnzg 4779 | . . . . 5 ⊢ (𝐵 ∈ {1o, 2o} → {𝐵} ≠ ∅) | |
7 | dmxp 5942 | . . . . . 6 ⊢ ({𝐵} ≠ ∅ → dom (𝐴 × {𝐵}) = 𝐴) | |
8 | 7 | eqcomd 2741 | . . . . 5 ⊢ ({𝐵} ≠ ∅ → 𝐴 = dom (𝐴 × {𝐵})) |
9 | 5, 6, 8 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 = dom (𝐴 × {𝐵})) |
10 | simp1 1135 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 ∈ On) | |
11 | 9, 10 | eqeltrrd 2840 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → dom (𝐴 × {𝐵}) ∈ On) |
12 | 3 | frnd 6745 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → ran (𝐴 × {𝐵}) ⊆ {1o, 2o}) |
13 | elno2 27714 | . . 3 ⊢ ((𝐴 × {𝐵}) ∈ No ↔ (Fun (𝐴 × {𝐵}) ∧ dom (𝐴 × {𝐵}) ∈ On ∧ ran (𝐴 × {𝐵}) ⊆ {1o, 2o})) | |
14 | 4, 11, 12, 13 | syl3anbrc 1342 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
15 | 2, 14 | mpd3an3 1461 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 ∅c0 4339 {csn 4631 {cpr 4633 × cxp 5687 dom cdm 5689 ran crn 5690 Oncon0 6386 Fun wfun 6557 ⟶wf 6559 1oc1o 8498 2oc2o 8499 No csur 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-no 27702 |
This theorem is referenced by: onnobdayg 43420 bdaybndex 43421 onno 43423 |
Copyright terms: Public domain | W3C validator |