Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onnog Structured version   Visualization version   GIF version

Theorem onnog 43546
Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
Assertion
Ref Expression
onnog ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No )

Proof of Theorem onnog
StepHypRef Expression
1 fconst6g 6717 . . 3 (𝐵 ∈ {1o, 2o} → (𝐴 × {𝐵}):𝐴⟶{1o, 2o})
21adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o})
3 simp3 1138 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o})
43ffund 6660 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → Fun (𝐴 × {𝐵}))
5 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐵 ∈ {1o, 2o})
6 snnzg 4726 . . . . 5 (𝐵 ∈ {1o, 2o} → {𝐵} ≠ ∅)
7 dmxp 5873 . . . . . 6 ({𝐵} ≠ ∅ → dom (𝐴 × {𝐵}) = 𝐴)
87eqcomd 2739 . . . . 5 ({𝐵} ≠ ∅ → 𝐴 = dom (𝐴 × {𝐵}))
95, 6, 83syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 = dom (𝐴 × {𝐵}))
10 simp1 1136 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 ∈ On)
119, 10eqeltrrd 2834 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → dom (𝐴 × {𝐵}) ∈ On)
123frnd 6664 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → ran (𝐴 × {𝐵}) ⊆ {1o, 2o})
13 elno2 27594 . . 3 ((𝐴 × {𝐵}) ∈ No ↔ (Fun (𝐴 × {𝐵}) ∧ dom (𝐴 × {𝐵}) ∈ On ∧ ran (𝐴 × {𝐵}) ⊆ {1o, 2o}))
144, 11, 12, 13syl3anbrc 1344 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}) ∈ No )
152, 14mpd3an3 1464 1 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wss 3898  c0 4282  {csn 4575  {cpr 4577   × cxp 5617  dom cdm 5619  ran crn 5620  Oncon0 6311  Fun wfun 6480  wf 6482  1oc1o 8384  2oc2o 8385   No csur 27579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490  df-no 27582
This theorem is referenced by:  onnobdayg  43547  bdaybndex  43548  onno  43550
  Copyright terms: Public domain W3C validator