Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onnog Structured version   Visualization version   GIF version

Theorem onnog 43425
Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
Assertion
Ref Expression
onnog ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No )

Proof of Theorem onnog
StepHypRef Expression
1 fconst6g 6752 . . 3 (𝐵 ∈ {1o, 2o} → (𝐴 × {𝐵}):𝐴⟶{1o, 2o})
21adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o})
3 simp3 1138 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o})
43ffund 6695 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → Fun (𝐴 × {𝐵}))
5 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐵 ∈ {1o, 2o})
6 snnzg 4741 . . . . 5 (𝐵 ∈ {1o, 2o} → {𝐵} ≠ ∅)
7 dmxp 5895 . . . . . 6 ({𝐵} ≠ ∅ → dom (𝐴 × {𝐵}) = 𝐴)
87eqcomd 2736 . . . . 5 ({𝐵} ≠ ∅ → 𝐴 = dom (𝐴 × {𝐵}))
95, 6, 83syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 = dom (𝐴 × {𝐵}))
10 simp1 1136 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 ∈ On)
119, 10eqeltrrd 2830 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → dom (𝐴 × {𝐵}) ∈ On)
123frnd 6699 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → ran (𝐴 × {𝐵}) ⊆ {1o, 2o})
13 elno2 27573 . . 3 ((𝐴 × {𝐵}) ∈ No ↔ (Fun (𝐴 × {𝐵}) ∧ dom (𝐴 × {𝐵}) ∈ On ∧ ran (𝐴 × {𝐵}) ⊆ {1o, 2o}))
144, 11, 12, 13syl3anbrc 1344 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}) ∈ No )
152, 14mpd3an3 1464 1 ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wss 3917  c0 4299  {csn 4592  {cpr 4594   × cxp 5639  dom cdm 5641  ran crn 5642  Oncon0 6335  Fun wfun 6508  wf 6510  1oc1o 8430  2oc2o 8431   No csur 27558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-no 27561
This theorem is referenced by:  onnobdayg  43426  bdaybndex  43427  onno  43429
  Copyright terms: Public domain W3C validator