![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onnog | Structured version Visualization version GIF version |
Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
Ref | Expression |
---|---|
onnog | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6781 | . . 3 ⊢ (𝐵 ∈ {1o, 2o} → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) | |
2 | 1 | adantl 480 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) |
3 | simp3 1136 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) | |
4 | 3 | ffund 6722 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → Fun (𝐴 × {𝐵})) |
5 | simp2 1135 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐵 ∈ {1o, 2o}) | |
6 | snnzg 4779 | . . . . 5 ⊢ (𝐵 ∈ {1o, 2o} → {𝐵} ≠ ∅) | |
7 | dmxp 5929 | . . . . . 6 ⊢ ({𝐵} ≠ ∅ → dom (𝐴 × {𝐵}) = 𝐴) | |
8 | 7 | eqcomd 2736 | . . . . 5 ⊢ ({𝐵} ≠ ∅ → 𝐴 = dom (𝐴 × {𝐵})) |
9 | 5, 6, 8 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 = dom (𝐴 × {𝐵})) |
10 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → 𝐴 ∈ On) | |
11 | 9, 10 | eqeltrrd 2832 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → dom (𝐴 × {𝐵}) ∈ On) |
12 | 3 | frnd 6726 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → ran (𝐴 × {𝐵}) ⊆ {1o, 2o}) |
13 | elno2 27391 | . . 3 ⊢ ((𝐴 × {𝐵}) ∈ No ↔ (Fun (𝐴 × {𝐵}) ∧ dom (𝐴 × {𝐵}) ∈ On ∧ ran (𝐴 × {𝐵}) ⊆ {1o, 2o})) | |
14 | 4, 11, 12, 13 | syl3anbrc 1341 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o} ∧ (𝐴 × {𝐵}):𝐴⟶{1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
15 | 2, 14 | mpd3an3 1460 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ⊆ wss 3949 ∅c0 4323 {csn 4629 {cpr 4631 × cxp 5675 dom cdm 5677 ran crn 5678 Oncon0 6365 Fun wfun 6538 ⟶wf 6540 1oc1o 8463 2oc2o 8464 No csur 27377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-no 27380 |
This theorem is referenced by: onnobdayg 42485 bdaybndex 42486 onno 42488 |
Copyright terms: Public domain | W3C validator |