MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsms Structured version   Visualization version   GIF version

Theorem eltsms 23192
Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
eltsms.b 𝐵 = (Base‘𝐺)
eltsms.j 𝐽 = (TopOpen‘𝐺)
eltsms.s 𝑆 = (𝒫 𝐴 ∩ Fin)
eltsms.1 (𝜑𝐺 ∈ CMnd)
eltsms.2 (𝜑𝐺 ∈ TopSp)
eltsms.a (𝜑𝐴𝑉)
eltsms.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
eltsms (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝐶   𝑧,𝑢,𝐹,𝑦   𝑢,𝐺,𝑦,𝑧   𝑢,𝐽,𝑧   𝑧,𝐴   𝜑,𝑢,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑧)   𝐶(𝑦,𝑧)   𝐽(𝑦)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem eltsms
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltsms.b . . . 4 𝐵 = (Base‘𝐺)
2 eltsms.j . . . 4 𝐽 = (TopOpen‘𝐺)
3 eltsms.s . . . 4 𝑆 = (𝒫 𝐴 ∩ Fin)
4 eqid 2738 . . . 4 ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 eltsms.1 . . . 4 (𝜑𝐺 ∈ CMnd)
6 eltsms.a . . . 4 (𝜑𝐴𝑉)
7 eltsms.f . . . 4 (𝜑𝐹:𝐴𝐵)
81, 2, 3, 4, 5, 6, 7tsmsval 23190 . . 3 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
98eleq2d 2824 . 2 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))))))
10 eltsms.2 . . . 4 (𝜑𝐺 ∈ TopSp)
111, 2istps 21991 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 217 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
13 eqid 2738 . . . 4 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
143, 13, 4, 6tsmsfbas 23187 . . 3 (𝜑 → ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆))
151, 3, 5, 6, 7tsmslem1 23188 . . . 4 ((𝜑𝑦𝑆) → (𝐺 Σg (𝐹𝑦)) ∈ 𝐵)
1615fmpttd 6971 . . 3 (𝜑 → (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵)
17 eqid 2738 . . . 4 (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})) = (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
1817flffbas 23054 . . 3 ((𝐽 ∈ (TopOn‘𝐵) ∧ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆) ∧ (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵) → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
1912, 14, 16, 18syl3anc 1369 . 2 (𝜑 → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
20 pwexg 5296 . . . . . . . . . . . 12 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21 inex1g 5238 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
226, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → (𝒫 𝐴 ∩ Fin) ∈ V)
233, 22eqeltrid 2843 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
2423adantr 480 . . . . . . . . 9 ((𝜑𝑢𝐽) → 𝑆 ∈ V)
25 rabexg 5250 . . . . . . . . 9 (𝑆 ∈ V → {𝑦𝑆𝑧𝑦} ∈ V)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝑢𝐽) → {𝑦𝑆𝑧𝑦} ∈ V)
2726ralrimivw 3108 . . . . . . 7 ((𝜑𝑢𝐽) → ∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V)
28 imaeq2 5954 . . . . . . . . 9 (𝑤 = {𝑦𝑆𝑧𝑦} → ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) = ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}))
2928sseq1d 3948 . . . . . . . 8 (𝑤 = {𝑦𝑆𝑧𝑦} → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3013, 29rexrnmptw 6953 . . . . . . 7 (∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3127, 30syl 17 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
32 funmpt 6456 . . . . . . . . 9 Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
33 ssrab2 4009 . . . . . . . . . 10 {𝑦𝑆𝑧𝑦} ⊆ 𝑆
34 ovex 7288 . . . . . . . . . . 11 (𝐺 Σg (𝐹𝑦)) ∈ V
35 eqid 2738 . . . . . . . . . . 11 (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
3634, 35dmmpti 6561 . . . . . . . . . 10 dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = 𝑆
3733, 36sseqtrri 3954 . . . . . . . . 9 {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
38 funimass3 6913 . . . . . . . . 9 ((Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) ∧ {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢)))
3932, 37, 38mp2an 688 . . . . . . . 8 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢))
4035mptpreima 6130 . . . . . . . . 9 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) = {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢}
4140sseq2i 3946 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) ↔ {𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢})
42 ss2rab 4000 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢} ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4339, 41, 423bitri 296 . . . . . . 7 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4443rexbii 3177 . . . . . 6 (∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4531, 44bitrdi 286 . . . . 5 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
4645imbi2d 340 . . . 4 ((𝜑𝑢𝐽) → ((𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4746ralbidva 3119 . . 3 (𝜑 → (∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4847anbi2d 628 . 2 (𝜑 → ((𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢)) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
499, 19, 483bitrd 304 1 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  TopOpenctopn 17049   Σg cgsu 17068  CMndccmn 19301  fBascfbas 20498  filGencfg 20499  TopOnctopon 21967  TopSpctps 21989   fLimf cflf 22994   tsums ctsu 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-ntr 22079  df-nei 22157  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186
This theorem is referenced by:  tsmsi  23193  tsmscl  23194  tsmsgsum  23198  tsmssubm  23202  tsmsres  23203  tsmsf1o  23204  tsmsxp  23214  xrge0tsms  23903  xrge0tsmsd  31219
  Copyright terms: Public domain W3C validator