MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsms Structured version   Visualization version   GIF version

Theorem eltsms 24162
Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
eltsms.b 𝐵 = (Base‘𝐺)
eltsms.j 𝐽 = (TopOpen‘𝐺)
eltsms.s 𝑆 = (𝒫 𝐴 ∩ Fin)
eltsms.1 (𝜑𝐺 ∈ CMnd)
eltsms.2 (𝜑𝐺 ∈ TopSp)
eltsms.a (𝜑𝐴𝑉)
eltsms.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
eltsms (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝐶   𝑧,𝑢,𝐹,𝑦   𝑢,𝐺,𝑦,𝑧   𝑢,𝐽,𝑧   𝑧,𝐴   𝜑,𝑢,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑧)   𝐶(𝑦,𝑧)   𝐽(𝑦)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem eltsms
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltsms.b . . . 4 𝐵 = (Base‘𝐺)
2 eltsms.j . . . 4 𝐽 = (TopOpen‘𝐺)
3 eltsms.s . . . 4 𝑆 = (𝒫 𝐴 ∩ Fin)
4 eqid 2740 . . . 4 ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 eltsms.1 . . . 4 (𝜑𝐺 ∈ CMnd)
6 eltsms.a . . . 4 (𝜑𝐴𝑉)
7 eltsms.f . . . 4 (𝜑𝐹:𝐴𝐵)
81, 2, 3, 4, 5, 6, 7tsmsval 24160 . . 3 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
98eleq2d 2830 . 2 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))))))
10 eltsms.2 . . . 4 (𝜑𝐺 ∈ TopSp)
111, 2istps 22961 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 218 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
13 eqid 2740 . . . 4 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
143, 13, 4, 6tsmsfbas 24157 . . 3 (𝜑 → ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆))
151, 3, 5, 6, 7tsmslem1 24158 . . . 4 ((𝜑𝑦𝑆) → (𝐺 Σg (𝐹𝑦)) ∈ 𝐵)
1615fmpttd 7149 . . 3 (𝜑 → (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵)
17 eqid 2740 . . . 4 (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})) = (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
1817flffbas 24024 . . 3 ((𝐽 ∈ (TopOn‘𝐵) ∧ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆) ∧ (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵) → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
1912, 14, 16, 18syl3anc 1371 . 2 (𝜑 → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
20 pwexg 5396 . . . . . . . . . . . 12 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21 inex1g 5337 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
226, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → (𝒫 𝐴 ∩ Fin) ∈ V)
233, 22eqeltrid 2848 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
2423adantr 480 . . . . . . . . 9 ((𝜑𝑢𝐽) → 𝑆 ∈ V)
25 rabexg 5355 . . . . . . . . 9 (𝑆 ∈ V → {𝑦𝑆𝑧𝑦} ∈ V)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝑢𝐽) → {𝑦𝑆𝑧𝑦} ∈ V)
2726ralrimivw 3156 . . . . . . 7 ((𝜑𝑢𝐽) → ∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V)
28 imaeq2 6085 . . . . . . . . 9 (𝑤 = {𝑦𝑆𝑧𝑦} → ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) = ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}))
2928sseq1d 4040 . . . . . . . 8 (𝑤 = {𝑦𝑆𝑧𝑦} → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3013, 29rexrnmptw 7129 . . . . . . 7 (∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3127, 30syl 17 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
32 funmpt 6616 . . . . . . . . 9 Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
33 ssrab2 4103 . . . . . . . . . 10 {𝑦𝑆𝑧𝑦} ⊆ 𝑆
34 ovex 7481 . . . . . . . . . . 11 (𝐺 Σg (𝐹𝑦)) ∈ V
35 eqid 2740 . . . . . . . . . . 11 (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
3634, 35dmmpti 6724 . . . . . . . . . 10 dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = 𝑆
3733, 36sseqtrri 4046 . . . . . . . . 9 {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
38 funimass3 7087 . . . . . . . . 9 ((Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) ∧ {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢)))
3932, 37, 38mp2an 691 . . . . . . . 8 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢))
4035mptpreima 6269 . . . . . . . . 9 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) = {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢}
4140sseq2i 4038 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) ↔ {𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢})
42 ss2rab 4094 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢} ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4339, 41, 423bitri 297 . . . . . . 7 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4443rexbii 3100 . . . . . 6 (∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4531, 44bitrdi 287 . . . . 5 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
4645imbi2d 340 . . . 4 ((𝜑𝑢𝐽) → ((𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4746ralbidva 3182 . . 3 (𝜑 → (∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4847anbi2d 629 . 2 (𝜑 → ((𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢)) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
499, 19, 483bitrd 305 1 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  Basecbs 17258  TopOpenctopn 17481   Σg cgsu 17500  CMndccmn 19822  fBascfbas 21375  filGencfg 21376  TopOnctopon 22937  TopSpctps 22959   fLimf cflf 23964   tsums ctsu 24155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-cntz 19357  df-cmn 19824  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-topsp 22960  df-ntr 23049  df-nei 23127  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tsms 24156
This theorem is referenced by:  tsmsi  24163  tsmscl  24164  tsmsgsum  24168  tsmssubm  24172  tsmsres  24173  tsmsf1o  24174  tsmsxp  24184  xrge0tsms  24875  xrge0tsmsd  33041
  Copyright terms: Public domain W3C validator