| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eltsms.b | . . . 4
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |  | eltsms.j | . . . 4
⊢ 𝐽 = (TopOpen‘𝐺) | 
| 3 |  | eltsms.s | . . . 4
⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | 
| 4 |  | eqid 2737 | . . . 4
⊢ ran
(𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | 
| 5 |  | eltsms.1 | . . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| 6 |  | eltsms.a | . . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 7 |  | eltsms.f | . . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | tsmsval 24139 | . . 3
⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | 
| 9 | 8 | eleq2d 2827 | . 2
⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))))) | 
| 10 |  | eltsms.2 | . . . 4
⊢ (𝜑 → 𝐺 ∈ TopSp) | 
| 11 | 1, 2 | istps 22940 | . . . 4
⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) | 
| 12 | 10, 11 | sylib 218 | . . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) | 
| 13 |  | eqid 2737 | . . . 4
⊢ (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | 
| 14 | 3, 13, 4, 6 | tsmsfbas 24136 | . . 3
⊢ (𝜑 → ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ∈ (fBas‘𝑆)) | 
| 15 | 1, 3, 5, 6, 7 | tsmslem1 24137 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝐵) | 
| 16 | 15 | fmpttd 7135 | . . 3
⊢ (𝜑 → (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))):𝑆⟶𝐵) | 
| 17 |  | eqid 2737 | . . . 4
⊢ (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) = (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) | 
| 18 | 17 | flffbas 24003 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ∈ (fBas‘𝑆) ∧ (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))):𝑆⟶𝐵) → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢)))) | 
| 19 | 12, 14, 16, 18 | syl3anc 1373 | . 2
⊢ (𝜑 → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢)))) | 
| 20 |  | pwexg 5378 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | 
| 21 |  | inex1g 5319 | . . . . . . . . . . . 12
⊢
(𝒫 𝐴 ∈
V → (𝒫 𝐴 ∩
Fin) ∈ V) | 
| 22 | 6, 20, 21 | 3syl 18 | . . . . . . . . . . 11
⊢ (𝜑 → (𝒫 𝐴 ∩ Fin) ∈
V) | 
| 23 | 3, 22 | eqeltrid 2845 | . . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ V) | 
| 24 | 23 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → 𝑆 ∈ V) | 
| 25 |  | rabexg 5337 | . . . . . . . . 9
⊢ (𝑆 ∈ V → {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V) | 
| 26 | 24, 25 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V) | 
| 27 | 26 | ralrimivw 3150 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → ∀𝑧 ∈ 𝑆 {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V) | 
| 28 |  | imaeq2 6074 | . . . . . . . . 9
⊢ (𝑤 = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} → ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) = ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) | 
| 29 | 28 | sseq1d 4015 | . . . . . . . 8
⊢ (𝑤 = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} → (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢)) | 
| 30 | 13, 29 | rexrnmptw 7115 | . . . . . . 7
⊢
(∀𝑧 ∈
𝑆 {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V → (∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢)) | 
| 31 | 27, 30 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢)) | 
| 32 |  | funmpt 6604 | . . . . . . . . 9
⊢ Fun
(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) | 
| 33 |  | ssrab2 4080 | . . . . . . . . . 10
⊢ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ 𝑆 | 
| 34 |  | ovex 7464 | . . . . . . . . . . 11
⊢ (𝐺 Σg
(𝐹 ↾ 𝑦)) ∈ V | 
| 35 |  | eqid 2737 | . . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) | 
| 36 | 34, 35 | dmmpti 6712 | . . . . . . . . . 10
⊢ dom
(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = 𝑆 | 
| 37 | 33, 36 | sseqtrri 4033 | . . . . . . . . 9
⊢ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ dom (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) | 
| 38 |  | funimass3 7074 | . . . . . . . . 9
⊢ ((Fun
(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) ∧ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ dom (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) → (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢))) | 
| 39 | 32, 37, 38 | mp2an 692 | . . . . . . . 8
⊢ (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢)) | 
| 40 | 35 | mptpreima 6258 | . . . . . . . . 9
⊢ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢) = {𝑦 ∈ 𝑆 ∣ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢} | 
| 41 | 40 | sseq2i 4013 | . . . . . . . 8
⊢ ({𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢) ↔ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ {𝑦 ∈ 𝑆 ∣ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢}) | 
| 42 |  | ss2rab 4071 | . . . . . . . 8
⊢ ({𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ {𝑦 ∈ 𝑆 ∣ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢} ↔ ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) | 
| 43 | 39, 41, 42 | 3bitri 297 | . . . . . . 7
⊢ (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) | 
| 44 | 43 | rexbii 3094 | . . . . . 6
⊢
(∃𝑧 ∈
𝑆 ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) | 
| 45 | 31, 44 | bitrdi 287 | . . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) | 
| 46 | 45 | imbi2d 340 | . . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → ((𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢) ↔ (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) | 
| 47 | 46 | ralbidva 3176 | . . 3
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢) ↔ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) | 
| 48 | 47 | anbi2d 630 | . 2
⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢)) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) | 
| 49 | 9, 19, 48 | 3bitrd 305 | 1
⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) |