MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsms Structured version   Visualization version   GIF version

Theorem eltsms 23265
Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
eltsms.b 𝐵 = (Base‘𝐺)
eltsms.j 𝐽 = (TopOpen‘𝐺)
eltsms.s 𝑆 = (𝒫 𝐴 ∩ Fin)
eltsms.1 (𝜑𝐺 ∈ CMnd)
eltsms.2 (𝜑𝐺 ∈ TopSp)
eltsms.a (𝜑𝐴𝑉)
eltsms.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
eltsms (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝐶   𝑧,𝑢,𝐹,𝑦   𝑢,𝐺,𝑦,𝑧   𝑢,𝐽,𝑧   𝑧,𝐴   𝜑,𝑢,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑧)   𝐶(𝑦,𝑧)   𝐽(𝑦)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem eltsms
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltsms.b . . . 4 𝐵 = (Base‘𝐺)
2 eltsms.j . . . 4 𝐽 = (TopOpen‘𝐺)
3 eltsms.s . . . 4 𝑆 = (𝒫 𝐴 ∩ Fin)
4 eqid 2739 . . . 4 ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 eltsms.1 . . . 4 (𝜑𝐺 ∈ CMnd)
6 eltsms.a . . . 4 (𝜑𝐴𝑉)
7 eltsms.f . . . 4 (𝜑𝐹:𝐴𝐵)
81, 2, 3, 4, 5, 6, 7tsmsval 23263 . . 3 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
98eleq2d 2825 . 2 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))))))
10 eltsms.2 . . . 4 (𝜑𝐺 ∈ TopSp)
111, 2istps 22064 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 217 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
13 eqid 2739 . . . 4 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
143, 13, 4, 6tsmsfbas 23260 . . 3 (𝜑 → ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆))
151, 3, 5, 6, 7tsmslem1 23261 . . . 4 ((𝜑𝑦𝑆) → (𝐺 Σg (𝐹𝑦)) ∈ 𝐵)
1615fmpttd 6983 . . 3 (𝜑 → (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵)
17 eqid 2739 . . . 4 (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})) = (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
1817flffbas 23127 . . 3 ((𝐽 ∈ (TopOn‘𝐵) ∧ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆) ∧ (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵) → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
1912, 14, 16, 18syl3anc 1369 . 2 (𝜑 → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
20 pwexg 5304 . . . . . . . . . . . 12 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21 inex1g 5246 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
226, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → (𝒫 𝐴 ∩ Fin) ∈ V)
233, 22eqeltrid 2844 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
2423adantr 480 . . . . . . . . 9 ((𝜑𝑢𝐽) → 𝑆 ∈ V)
25 rabexg 5258 . . . . . . . . 9 (𝑆 ∈ V → {𝑦𝑆𝑧𝑦} ∈ V)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝑢𝐽) → {𝑦𝑆𝑧𝑦} ∈ V)
2726ralrimivw 3110 . . . . . . 7 ((𝜑𝑢𝐽) → ∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V)
28 imaeq2 5962 . . . . . . . . 9 (𝑤 = {𝑦𝑆𝑧𝑦} → ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) = ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}))
2928sseq1d 3956 . . . . . . . 8 (𝑤 = {𝑦𝑆𝑧𝑦} → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3013, 29rexrnmptw 6965 . . . . . . 7 (∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3127, 30syl 17 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
32 funmpt 6468 . . . . . . . . 9 Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
33 ssrab2 4017 . . . . . . . . . 10 {𝑦𝑆𝑧𝑦} ⊆ 𝑆
34 ovex 7301 . . . . . . . . . . 11 (𝐺 Σg (𝐹𝑦)) ∈ V
35 eqid 2739 . . . . . . . . . . 11 (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
3634, 35dmmpti 6573 . . . . . . . . . 10 dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = 𝑆
3733, 36sseqtrri 3962 . . . . . . . . 9 {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
38 funimass3 6925 . . . . . . . . 9 ((Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) ∧ {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢)))
3932, 37, 38mp2an 688 . . . . . . . 8 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢))
4035mptpreima 6138 . . . . . . . . 9 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) = {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢}
4140sseq2i 3954 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) ↔ {𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢})
42 ss2rab 4008 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢} ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4339, 41, 423bitri 296 . . . . . . 7 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4443rexbii 3179 . . . . . 6 (∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4531, 44bitrdi 286 . . . . 5 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
4645imbi2d 340 . . . 4 ((𝜑𝑢𝐽) → ((𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4746ralbidva 3121 . . 3 (𝜑 → (∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4847anbi2d 628 . 2 (𝜑 → ((𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢)) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
499, 19, 483bitrd 304 1 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  cin 3890  wss 3891  𝒫 cpw 4538  cmpt 5161  ccnv 5587  dom cdm 5588  ran crn 5589  cres 5590  cima 5591  Fun wfun 6424  wf 6426  cfv 6430  (class class class)co 7268  Fincfn 8707  Basecbs 16893  TopOpenctopn 17113   Σg cgsu 17132  CMndccmn 19367  fBascfbas 20566  filGencfg 20567  TopOnctopon 22040  TopSpctps 22062   fLimf cflf 23067   tsums ctsu 23258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-seq 13703  df-hash 14026  df-0g 17133  df-gsum 17134  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-cntz 18904  df-cmn 19369  df-fbas 20575  df-fg 20576  df-top 22024  df-topon 22041  df-topsp 22063  df-ntr 22152  df-nei 22230  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-tsms 23259
This theorem is referenced by:  tsmsi  23266  tsmscl  23267  tsmsgsum  23271  tsmssubm  23275  tsmsres  23276  tsmsf1o  23277  tsmsxp  23287  xrge0tsms  23978  xrge0tsmsd  31296
  Copyright terms: Public domain W3C validator