MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsms Structured version   Visualization version   GIF version

Theorem eltsms 23521
Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
eltsms.b 𝐵 = (Base‘𝐺)
eltsms.j 𝐽 = (TopOpen‘𝐺)
eltsms.s 𝑆 = (𝒫 𝐴 ∩ Fin)
eltsms.1 (𝜑𝐺 ∈ CMnd)
eltsms.2 (𝜑𝐺 ∈ TopSp)
eltsms.a (𝜑𝐴𝑉)
eltsms.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
eltsms (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝐶   𝑧,𝑢,𝐹,𝑦   𝑢,𝐺,𝑦,𝑧   𝑢,𝐽,𝑧   𝑧,𝐴   𝜑,𝑢,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑧)   𝐶(𝑦,𝑧)   𝐽(𝑦)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem eltsms
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltsms.b . . . 4 𝐵 = (Base‘𝐺)
2 eltsms.j . . . 4 𝐽 = (TopOpen‘𝐺)
3 eltsms.s . . . 4 𝑆 = (𝒫 𝐴 ∩ Fin)
4 eqid 2731 . . . 4 ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 eltsms.1 . . . 4 (𝜑𝐺 ∈ CMnd)
6 eltsms.a . . . 4 (𝜑𝐴𝑉)
7 eltsms.f . . . 4 (𝜑𝐹:𝐴𝐵)
81, 2, 3, 4, 5, 6, 7tsmsval 23519 . . 3 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
98eleq2d 2818 . 2 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))))))
10 eltsms.2 . . . 4 (𝜑𝐺 ∈ TopSp)
111, 2istps 22320 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 217 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
13 eqid 2731 . . . 4 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
143, 13, 4, 6tsmsfbas 23516 . . 3 (𝜑 → ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆))
151, 3, 5, 6, 7tsmslem1 23517 . . . 4 ((𝜑𝑦𝑆) → (𝐺 Σg (𝐹𝑦)) ∈ 𝐵)
1615fmpttd 7068 . . 3 (𝜑 → (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵)
17 eqid 2731 . . . 4 (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})) = (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
1817flffbas 23383 . . 3 ((𝐽 ∈ (TopOn‘𝐵) ∧ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆) ∧ (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵) → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
1912, 14, 16, 18syl3anc 1371 . 2 (𝜑 → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
20 pwexg 5338 . . . . . . . . . . . 12 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21 inex1g 5281 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
226, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → (𝒫 𝐴 ∩ Fin) ∈ V)
233, 22eqeltrid 2836 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
2423adantr 481 . . . . . . . . 9 ((𝜑𝑢𝐽) → 𝑆 ∈ V)
25 rabexg 5293 . . . . . . . . 9 (𝑆 ∈ V → {𝑦𝑆𝑧𝑦} ∈ V)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝑢𝐽) → {𝑦𝑆𝑧𝑦} ∈ V)
2726ralrimivw 3143 . . . . . . 7 ((𝜑𝑢𝐽) → ∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V)
28 imaeq2 6014 . . . . . . . . 9 (𝑤 = {𝑦𝑆𝑧𝑦} → ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) = ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}))
2928sseq1d 3978 . . . . . . . 8 (𝑤 = {𝑦𝑆𝑧𝑦} → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3013, 29rexrnmptw 7050 . . . . . . 7 (∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3127, 30syl 17 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
32 funmpt 6544 . . . . . . . . 9 Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
33 ssrab2 4042 . . . . . . . . . 10 {𝑦𝑆𝑧𝑦} ⊆ 𝑆
34 ovex 7395 . . . . . . . . . . 11 (𝐺 Σg (𝐹𝑦)) ∈ V
35 eqid 2731 . . . . . . . . . . 11 (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
3634, 35dmmpti 6650 . . . . . . . . . 10 dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = 𝑆
3733, 36sseqtrri 3984 . . . . . . . . 9 {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
38 funimass3 7009 . . . . . . . . 9 ((Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) ∧ {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢)))
3932, 37, 38mp2an 690 . . . . . . . 8 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢))
4035mptpreima 6195 . . . . . . . . 9 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) = {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢}
4140sseq2i 3976 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) ↔ {𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢})
42 ss2rab 4033 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢} ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4339, 41, 423bitri 296 . . . . . . 7 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4443rexbii 3093 . . . . . 6 (∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4531, 44bitrdi 286 . . . . 5 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
4645imbi2d 340 . . . 4 ((𝜑𝑢𝐽) → ((𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4746ralbidva 3168 . . 3 (𝜑 → (∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4847anbi2d 629 . 2 (𝜑 → ((𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢)) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
499, 19, 483bitrd 304 1 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  {crab 3405  Vcvv 3446  cin 3912  wss 3913  𝒫 cpw 4565  cmpt 5193  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6495  wf 6497  cfv 6501  (class class class)co 7362  Fincfn 8890  Basecbs 17094  TopOpenctopn 17317   Σg cgsu 17336  CMndccmn 19576  fBascfbas 20821  filGencfg 20822  TopOnctopon 22296  TopSpctps 22318   fLimf cflf 23323   tsums ctsu 23514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435  df-fzo 13578  df-seq 13917  df-hash 14241  df-0g 17337  df-gsum 17338  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-cntz 19111  df-cmn 19578  df-fbas 20830  df-fg 20831  df-top 22280  df-topon 22297  df-topsp 22319  df-ntr 22408  df-nei 22486  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-tsms 23515
This theorem is referenced by:  tsmsi  23522  tsmscl  23523  tsmsgsum  23527  tsmssubm  23531  tsmsres  23532  tsmsf1o  23533  tsmsxp  23543  xrge0tsms  24234  xrge0tsmsd  31969
  Copyright terms: Public domain W3C validator