| Step | Hyp | Ref
| Expression |
| 1 | | eltsms.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | eltsms.j |
. . . 4
⊢ 𝐽 = (TopOpen‘𝐺) |
| 3 | | eltsms.s |
. . . 4
⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
| 4 | | eqid 2736 |
. . . 4
⊢ ran
(𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
| 5 | | eltsms.1 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 6 | | eltsms.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 7 | | eltsms.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | tsmsval 24074 |
. . 3
⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| 9 | 8 | eleq2d 2821 |
. 2
⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))))) |
| 10 | | eltsms.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 11 | 1, 2 | istps 22877 |
. . . 4
⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
| 12 | 10, 11 | sylib 218 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
| 13 | | eqid 2736 |
. . . 4
⊢ (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
| 14 | 3, 13, 4, 6 | tsmsfbas 24071 |
. . 3
⊢ (𝜑 → ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ∈ (fBas‘𝑆)) |
| 15 | 1, 3, 5, 6, 7 | tsmslem1 24072 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝐵) |
| 16 | 15 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))):𝑆⟶𝐵) |
| 17 | | eqid 2736 |
. . . 4
⊢ (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) = (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) |
| 18 | 17 | flffbas 23938 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ∈ (fBas‘𝑆) ∧ (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))):𝑆⟶𝐵) → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢)))) |
| 19 | 12, 14, 16, 18 | syl3anc 1373 |
. 2
⊢ (𝜑 → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢)))) |
| 20 | | pwexg 5353 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 21 | | inex1g 5294 |
. . . . . . . . . . . 12
⊢
(𝒫 𝐴 ∈
V → (𝒫 𝐴 ∩
Fin) ∈ V) |
| 22 | 6, 20, 21 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝒫 𝐴 ∩ Fin) ∈
V) |
| 23 | 3, 22 | eqeltrid 2839 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ V) |
| 24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → 𝑆 ∈ V) |
| 25 | | rabexg 5312 |
. . . . . . . . 9
⊢ (𝑆 ∈ V → {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V) |
| 26 | 24, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V) |
| 27 | 26 | ralrimivw 3137 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → ∀𝑧 ∈ 𝑆 {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V) |
| 28 | | imaeq2 6048 |
. . . . . . . . 9
⊢ (𝑤 = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} → ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) = ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) |
| 29 | 28 | sseq1d 3995 |
. . . . . . . 8
⊢ (𝑤 = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} → (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢)) |
| 30 | 13, 29 | rexrnmptw 7090 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑆 {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ∈ V → (∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢)) |
| 31 | 27, 30 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢)) |
| 32 | | funmpt 6579 |
. . . . . . . . 9
⊢ Fun
(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) |
| 33 | | ssrab2 4060 |
. . . . . . . . . 10
⊢ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ 𝑆 |
| 34 | | ovex 7443 |
. . . . . . . . . . 11
⊢ (𝐺 Σg
(𝐹 ↾ 𝑦)) ∈ V |
| 35 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) |
| 36 | 34, 35 | dmmpti 6687 |
. . . . . . . . . 10
⊢ dom
(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = 𝑆 |
| 37 | 33, 36 | sseqtrri 4013 |
. . . . . . . . 9
⊢ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ dom (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) |
| 38 | | funimass3 7049 |
. . . . . . . . 9
⊢ ((Fun
(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) ∧ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ dom (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) → (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢))) |
| 39 | 32, 37, 38 | mp2an 692 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢)) |
| 40 | 35 | mptpreima 6232 |
. . . . . . . . 9
⊢ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢) = {𝑦 ∈ 𝑆 ∣ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢} |
| 41 | 40 | sseq2i 3993 |
. . . . . . . 8
⊢ ({𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ (◡(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑢) ↔ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ {𝑦 ∈ 𝑆 ∣ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢}) |
| 42 | | ss2rab 4051 |
. . . . . . . 8
⊢ ({𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦} ⊆ {𝑦 ∈ 𝑆 ∣ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢} ↔ ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
| 43 | 39, 41, 42 | 3bitri 297 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
| 44 | 43 | rexbii 3084 |
. . . . . 6
⊢
(∃𝑧 ∈
𝑆 ((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
| 45 | 31, 44 | bitrdi 287 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) |
| 46 | 45 | imbi2d 340 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → ((𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢) ↔ (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
| 47 | 46 | ralbidva 3162 |
. . 3
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢) ↔ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
| 48 | 47 | anbi2d 630 |
. 2
⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})((𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) “ 𝑤) ⊆ 𝑢)) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) |
| 49 | 9, 19, 48 | 3bitrd 305 |
1
⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) |