MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsms Structured version   Visualization version   GIF version

Theorem eltsms 23484
Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
eltsms.b 𝐵 = (Base‘𝐺)
eltsms.j 𝐽 = (TopOpen‘𝐺)
eltsms.s 𝑆 = (𝒫 𝐴 ∩ Fin)
eltsms.1 (𝜑𝐺 ∈ CMnd)
eltsms.2 (𝜑𝐺 ∈ TopSp)
eltsms.a (𝜑𝐴𝑉)
eltsms.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
eltsms (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝐶   𝑧,𝑢,𝐹,𝑦   𝑢,𝐺,𝑦,𝑧   𝑢,𝐽,𝑧   𝑧,𝐴   𝜑,𝑢,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑧)   𝐶(𝑦,𝑧)   𝐽(𝑦)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem eltsms
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltsms.b . . . 4 𝐵 = (Base‘𝐺)
2 eltsms.j . . . 4 𝐽 = (TopOpen‘𝐺)
3 eltsms.s . . . 4 𝑆 = (𝒫 𝐴 ∩ Fin)
4 eqid 2736 . . . 4 ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 eltsms.1 . . . 4 (𝜑𝐺 ∈ CMnd)
6 eltsms.a . . . 4 (𝜑𝐴𝑉)
7 eltsms.f . . . 4 (𝜑𝐹:𝐴𝐵)
81, 2, 3, 4, 5, 6, 7tsmsval 23482 . . 3 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
98eleq2d 2823 . 2 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))))))
10 eltsms.2 . . . 4 (𝜑𝐺 ∈ TopSp)
111, 2istps 22283 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 217 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
13 eqid 2736 . . . 4 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
143, 13, 4, 6tsmsfbas 23479 . . 3 (𝜑 → ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆))
151, 3, 5, 6, 7tsmslem1 23480 . . . 4 ((𝜑𝑦𝑆) → (𝐺 Σg (𝐹𝑦)) ∈ 𝐵)
1615fmpttd 7063 . . 3 (𝜑 → (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵)
17 eqid 2736 . . . 4 (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})) = (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
1817flffbas 23346 . . 3 ((𝐽 ∈ (TopOn‘𝐵) ∧ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) ∈ (fBas‘𝑆) ∧ (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))):𝑆𝐵) → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
1912, 14, 16, 18syl3anc 1371 . 2 (𝜑 → (𝐶 ∈ ((𝐽 fLimf (𝑆filGenran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢))))
20 pwexg 5333 . . . . . . . . . . . 12 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21 inex1g 5276 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
226, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → (𝒫 𝐴 ∩ Fin) ∈ V)
233, 22eqeltrid 2842 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
2423adantr 481 . . . . . . . . 9 ((𝜑𝑢𝐽) → 𝑆 ∈ V)
25 rabexg 5288 . . . . . . . . 9 (𝑆 ∈ V → {𝑦𝑆𝑧𝑦} ∈ V)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝑢𝐽) → {𝑦𝑆𝑧𝑦} ∈ V)
2726ralrimivw 3147 . . . . . . 7 ((𝜑𝑢𝐽) → ∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V)
28 imaeq2 6009 . . . . . . . . 9 (𝑤 = {𝑦𝑆𝑧𝑦} → ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) = ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}))
2928sseq1d 3975 . . . . . . . 8 (𝑤 = {𝑦𝑆𝑧𝑦} → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3013, 29rexrnmptw 7045 . . . . . . 7 (∀𝑧𝑆 {𝑦𝑆𝑧𝑦} ∈ V → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
3127, 30syl 17 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢))
32 funmpt 6539 . . . . . . . . 9 Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
33 ssrab2 4037 . . . . . . . . . 10 {𝑦𝑆𝑧𝑦} ⊆ 𝑆
34 ovex 7390 . . . . . . . . . . 11 (𝐺 Σg (𝐹𝑦)) ∈ V
35 eqid 2736 . . . . . . . . . . 11 (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
3634, 35dmmpti 6645 . . . . . . . . . 10 dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) = 𝑆
3733, 36sseqtrri 3981 . . . . . . . . 9 {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))
38 funimass3 7004 . . . . . . . . 9 ((Fun (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) ∧ {𝑦𝑆𝑧𝑦} ⊆ dom (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) → (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢)))
3932, 37, 38mp2an 690 . . . . . . . 8 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ {𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢))
4035mptpreima 6190 . . . . . . . . 9 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) = {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢}
4140sseq2i 3973 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑢) ↔ {𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢})
42 ss2rab 4028 . . . . . . . 8 ({𝑦𝑆𝑧𝑦} ⊆ {𝑦𝑆 ∣ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢} ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4339, 41, 423bitri 296 . . . . . . 7 (((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∀𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4443rexbii 3097 . . . . . 6 (∃𝑧𝑆 ((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ {𝑦𝑆𝑧𝑦}) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
4531, 44bitrdi 286 . . . . 5 ((𝜑𝑢𝐽) → (∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢 ↔ ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
4645imbi2d 340 . . . 4 ((𝜑𝑢𝐽) → ((𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4746ralbidva 3172 . . 3 (𝜑 → (∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢) ↔ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
4847anbi2d 629 . 2 (𝜑 → ((𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑤 ∈ ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})((𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))) “ 𝑤) ⊆ 𝑢)) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
499, 19, 483bitrd 304 1 (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶𝐵 ∧ ∀𝑢𝐽 (𝐶𝑢 → ∃𝑧𝑆𝑦𝑆 (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  TopOpenctopn 17303   Σg cgsu 17322  CMndccmn 19562  fBascfbas 20784  filGencfg 20785  TopOnctopon 22259  TopSpctps 22281   fLimf cflf 23286   tsums ctsu 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-cntz 19097  df-cmn 19564  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-topsp 22282  df-ntr 22371  df-nei 22449  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tsms 23478
This theorem is referenced by:  tsmsi  23485  tsmscl  23486  tsmsgsum  23490  tsmssubm  23494  tsmsres  23495  tsmsf1o  23496  tsmsxp  23506  xrge0tsms  24197  xrge0tsmsd  31899
  Copyright terms: Public domain W3C validator