MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxpb Structured version   Visualization version   GIF version

Theorem ssxpb 6025
Description: A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
ssxpb ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))

Proof of Theorem ssxpb
StepHypRef Expression
1 xpnz 6010 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5793 . . . . . . . . 9 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 484 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
41, 3sylbir 237 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
54adantr 483 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) = 𝐴)
6 dmss 5765 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
76adantl 484 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
85, 7eqsstrrd 4005 . . . . 5 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴 ⊆ dom (𝐶 × 𝐷))
9 dmxpss 6022 . . . . 5 dom (𝐶 × 𝐷) ⊆ 𝐶
108, 9sstrdi 3978 . . . 4 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴𝐶)
11 rnxp 6021 . . . . . . . . 9 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
1211adantr 483 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
131, 12sylbir 237 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
1413adantr 483 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) = 𝐵)
15 rnss 5803 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1615adantl 484 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1714, 16eqsstrrd 4005 . . . . 5 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵 ⊆ ran (𝐶 × 𝐷))
18 rnxpss 6023 . . . . 5 ran (𝐶 × 𝐷) ⊆ 𝐷
1917, 18sstrdi 3978 . . . 4 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵𝐷)
2010, 19jca 514 . . 3 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → (𝐴𝐶𝐵𝐷))
2120ex 415 . 2 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → (𝐴𝐶𝐵𝐷)))
22 xpss12 5564 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
2321, 22impbid1 227 1 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wne 3016  wss 3935  c0 4290   × cxp 5547  dom cdm 5549  ran crn 5550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557  df-dm 5559  df-rn 5560
This theorem is referenced by:  xp11  6026  dibord  38289
  Copyright terms: Public domain W3C validator