MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxpb Structured version   Visualization version   GIF version

Theorem ssxpb 6077
Description: A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
ssxpb ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))

Proof of Theorem ssxpb
StepHypRef Expression
1 xpnz 6062 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5838 . . . . . . . . 9 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 482 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
41, 3sylbir 234 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
54adantr 481 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) = 𝐴)
6 dmss 5811 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
76adantl 482 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
85, 7eqsstrrd 3960 . . . . 5 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴 ⊆ dom (𝐶 × 𝐷))
9 dmxpss 6074 . . . . 5 dom (𝐶 × 𝐷) ⊆ 𝐶
108, 9sstrdi 3933 . . . 4 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴𝐶)
11 rnxp 6073 . . . . . . . . 9 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
1211adantr 481 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
131, 12sylbir 234 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
1413adantr 481 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) = 𝐵)
15 rnss 5848 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1615adantl 482 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1714, 16eqsstrrd 3960 . . . . 5 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵 ⊆ ran (𝐶 × 𝐷))
18 rnxpss 6075 . . . . 5 ran (𝐶 × 𝐷) ⊆ 𝐷
1917, 18sstrdi 3933 . . . 4 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵𝐷)
2010, 19jca 512 . . 3 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → (𝐴𝐶𝐵𝐷))
2120ex 413 . 2 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → (𝐴𝐶𝐵𝐷)))
22 xpss12 5604 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
2321, 22impbid1 224 1 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wne 2943  wss 3887  c0 4256   × cxp 5587  dom cdm 5589  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  xp11  6078  dibord  39173
  Copyright terms: Public domain W3C validator