MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxpb Structured version   Visualization version   GIF version

Theorem ssxpb 6163
Description: A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
ssxpb ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))

Proof of Theorem ssxpb
StepHypRef Expression
1 xpnz 6148 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5908 . . . . . . . . 9 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 481 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
41, 3sylbir 235 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
54adantr 480 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) = 𝐴)
6 dmss 5882 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
76adantl 481 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
85, 7eqsstrrd 3994 . . . . 5 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴 ⊆ dom (𝐶 × 𝐷))
9 dmxpss 6160 . . . . 5 dom (𝐶 × 𝐷) ⊆ 𝐶
108, 9sstrdi 3971 . . . 4 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴𝐶)
11 rnxp 6159 . . . . . . . . 9 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
1211adantr 480 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
131, 12sylbir 235 . . . . . . 7 ((𝐴 × 𝐵) ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
1413adantr 480 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) = 𝐵)
15 rnss 5919 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1615adantl 481 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1714, 16eqsstrrd 3994 . . . . 5 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵 ⊆ ran (𝐶 × 𝐷))
18 rnxpss 6161 . . . . 5 ran (𝐶 × 𝐷) ⊆ 𝐷
1917, 18sstrdi 3971 . . . 4 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵𝐷)
2010, 19jca 511 . . 3 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → (𝐴𝐶𝐵𝐷))
2120ex 412 . 2 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → (𝐴𝐶𝐵𝐷)))
22 xpss12 5669 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
2321, 22impbid1 225 1 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wne 2932  wss 3926  c0 4308   × cxp 5652  dom cdm 5654  ran crn 5655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665
This theorem is referenced by:  xp11  6164  dibord  41178  aks6d1c2lem4  42140  aks6d1c2  42143
  Copyright terms: Public domain W3C validator