MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpid Structured version   Visualization version   GIF version

Theorem rnxpid 6146
Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
StepHypRef Expression
1 rn0 5889 . . 3 ran ∅ = ∅
2 xpeq2 5659 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅))
3 xp0 6131 . . . . 5 (𝐴 × ∅) = ∅
42, 3eqtrdi 2780 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
54rneqd 5902 . . 3 (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅)
6 id 22 . . 3 (𝐴 = ∅ → 𝐴 = ∅)
71, 5, 63eqtr4a 2790 . 2 (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴)
8 rnxp 6143 . 2 (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴)
97, 8pm2.61ine 3008 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4296   × cxp 5636  ran crn 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649
This theorem is referenced by:  sofld  6160  fpwwe2lem12  10595  ustimasn  24116  utopbas  24123  restutop  24125  ovoliunlem1  25403  metideq  33883  poimirlem3  37617  mblfinlem1  37651  rtrclex  43606
  Copyright terms: Public domain W3C validator