| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxpid | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rn0 5863 | . . 3 ⊢ ran ∅ = ∅ | |
| 2 | xpeq2 5635 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅)) | |
| 3 | xp0 6102 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | rneqd 5875 | . . 3 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2791 | . 2 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴) |
| 8 | rnxp 6114 | . 2 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3009 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4281 × cxp 5612 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: sofld 6131 fpwwe2lem12 10525 ustimasn 24136 utopbas 24143 restutop 24145 ovoliunlem1 25423 metideq 33896 poimirlem3 37642 mblfinlem1 37676 rtrclex 43629 |
| Copyright terms: Public domain | W3C validator |