MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpid Structured version   Visualization version   GIF version

Theorem rnxpid 6128
Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
StepHypRef Expression
1 rn0 5873 . . 3 ran ∅ = ∅
2 xpeq2 5642 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅))
3 xp0 5721 . . . . 5 (𝐴 × ∅) = ∅
42, 3eqtrdi 2784 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
54rneqd 5885 . . 3 (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅)
6 id 22 . . 3 (𝐴 = ∅ → 𝐴 = ∅)
71, 5, 63eqtr4a 2794 . 2 (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴)
8 rnxp 6125 . 2 (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴)
97, 8pm2.61ine 3013 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4284   × cxp 5619  ran crn 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632
This theorem is referenced by:  sofld  6142  fpwwe2lem12  10543  ustimasn  24153  utopbas  24160  restutop  24162  ovoliunlem1  25440  metideq  33917  poimirlem3  37673  mblfinlem1  37707  rtrclex  43724
  Copyright terms: Public domain W3C validator