| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxpid | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rn0 5872 | . . 3 ⊢ ran ∅ = ∅ | |
| 2 | xpeq2 5644 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅)) | |
| 3 | xp0 6111 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | rneqd 5884 | . . 3 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2790 | . 2 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴) |
| 8 | rnxp 6123 | . 2 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3008 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 × cxp 5621 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: sofld 6140 fpwwe2lem12 10555 ustimasn 24132 utopbas 24139 restutop 24141 ovoliunlem1 25419 metideq 33859 poimirlem3 37602 mblfinlem1 37636 rtrclex 43590 |
| Copyright terms: Public domain | W3C validator |