Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnxpid | Structured version Visualization version GIF version |
Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rn0 5834 | . . 3 ⊢ ran ∅ = ∅ | |
2 | xpeq2 5611 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅)) | |
3 | xp0 6060 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2796 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
5 | 4 | rneqd 5846 | . . 3 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅) |
6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
7 | 1, 5, 6 | 3eqtr4a 2806 | . 2 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴) |
8 | rnxp 6072 | . 2 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴) | |
9 | 7, 8 | pm2.61ine 3030 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∅c0 4262 × cxp 5588 ran crn 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 |
This theorem is referenced by: sofld 6089 fpwwe2lem12 10399 ustimasn 23378 utopbas 23385 restutop 23387 ovoliunlem1 24664 metideq 31839 poimirlem3 35776 mblfinlem1 35810 rtrclex 41195 |
Copyright terms: Public domain | W3C validator |