MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpid Structured version   Visualization version   GIF version

Theorem rnxpid 6126
Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
StepHypRef Expression
1 rn0 5872 . . 3 ran ∅ = ∅
2 xpeq2 5644 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅))
3 xp0 6111 . . . . 5 (𝐴 × ∅) = ∅
42, 3eqtrdi 2780 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
54rneqd 5884 . . 3 (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅)
6 id 22 . . 3 (𝐴 = ∅ → 𝐴 = ∅)
71, 5, 63eqtr4a 2790 . 2 (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴)
8 rnxp 6123 . 2 (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴)
97, 8pm2.61ine 3008 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4286   × cxp 5621  ran crn 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634
This theorem is referenced by:  sofld  6140  fpwwe2lem12  10555  ustimasn  24132  utopbas  24139  restutop  24141  ovoliunlem1  25419  metideq  33859  poimirlem3  37602  mblfinlem1  37636  rtrclex  43590
  Copyright terms: Public domain W3C validator