| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxpid | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rn0 5873 | . . 3 ⊢ ran ∅ = ∅ | |
| 2 | xpeq2 5642 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅)) | |
| 3 | xp0 5721 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2784 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | rneqd 5885 | . . 3 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2794 | . 2 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴) |
| 8 | rnxp 6125 | . 2 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3013 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4284 × cxp 5619 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: sofld 6142 fpwwe2lem12 10543 ustimasn 24153 utopbas 24160 restutop 24162 ovoliunlem1 25440 metideq 33917 poimirlem3 37673 mblfinlem1 37707 rtrclex 43724 |
| Copyright terms: Public domain | W3C validator |