Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnxpid | Structured version Visualization version GIF version |
Description: The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rn0 5824 | . . 3 ⊢ ran ∅ = ∅ | |
2 | xpeq2 5601 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅)) | |
3 | xp0 6050 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
5 | 4 | rneqd 5836 | . . 3 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅) |
6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
7 | 1, 5, 6 | 3eqtr4a 2805 | . 2 ⊢ (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴) |
8 | rnxp 6062 | . 2 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴) | |
9 | 7, 8 | pm2.61ine 3027 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 × cxp 5578 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: sofld 6079 fpwwe2lem12 10329 ustimasn 23288 utopbas 23295 restutop 23297 ovoliunlem1 24571 metideq 31745 poimirlem3 35707 mblfinlem1 35741 rtrclex 41114 |
Copyright terms: Public domain | W3C validator |