Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibord Structured version   Visualization version   GIF version

Theorem dibord 38414
 Description: The isomorphism B for a lattice 𝐾 is order-preserving in the region under co-atom 𝑊. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
dib11.b 𝐵 = (Base‘𝐾)
dib11.l = (le‘𝐾)
dib11.h 𝐻 = (LHyp‘𝐾)
dib11.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibord (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))

Proof of Theorem dibord
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dib11.b . . . . 5 𝐵 = (Base‘𝐾)
2 dib11.l . . . . 5 = (le‘𝐾)
3 dib11.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 eqid 2822 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
5 eqid 2822 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
6 eqid 2822 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dib11.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 38399 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
983adant3 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
101, 2, 3, 4, 5, 6, 7dibval2 38399 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) = ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
11103adant2 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) = ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
129, 11sseq12d 3975 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
131, 2, 3, 7dibn0 38408 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
14133adant3 1129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑋) ≠ ∅)
159, 14eqnetrrd 3079 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅)
16 ssxpb 6009 . . 3 (((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅ → (((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
1715, 16syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
18 ssid 3964 . . . 4 {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}
1918biantru 533 . . 3 ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
201, 2, 3, 6diaord 38302 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ↔ 𝑋 𝑌))
2119, 20bitr3id 288 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ↔ 𝑋 𝑌))
2212, 17, 213bitrd 308 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011   ⊆ wss 3908  ∅c0 4265  {csn 4539   class class class wbr 5042   ↦ cmpt 5122   I cid 5436   × cxp 5530   ↾ cres 5534  ‘cfv 6334  Basecbs 16474  lecple 16563  HLchlt 36605  LHypclh 37239  LTrncltrn 37356  DIsoAcdia 38283  DIsoBcdib 38393 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-riotaBAD 36208 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-undef 7926  df-map 8395  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-oposet 36431  df-ol 36433  df-oml 36434  df-covers 36521  df-ats 36522  df-atl 36553  df-cvlat 36577  df-hlat 36606  df-llines 36753  df-lplanes 36754  df-lvols 36755  df-lines 36756  df-psubsp 36758  df-pmap 36759  df-padd 37051  df-lhyp 37243  df-laut 37244  df-ldil 37359  df-ltrn 37360  df-trl 37414  df-disoa 38284  df-dib 38394 This theorem is referenced by:  dib11N  38415  cdlemn2a  38451  dihord1  38473  dihord3  38512  dihord5b  38514
 Copyright terms: Public domain W3C validator