Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibord Structured version   Visualization version   GIF version

Theorem dibord 40333
Description: The isomorphism B for a lattice 𝐾 is order-preserving in the region under co-atom π‘Š. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
dib11.b 𝐡 = (Baseβ€˜πΎ)
dib11.l ≀ = (leβ€˜πΎ)
dib11.h 𝐻 = (LHypβ€˜πΎ)
dib11.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibord (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))

Proof of Theorem dibord
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dib11.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 dib11.l . . . . 5 ≀ = (leβ€˜πΎ)
3 dib11.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 eqid 2730 . . . . 5 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 eqid 2730 . . . . 5 (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡)) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))
6 eqid 2730 . . . . 5 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
7 dib11.i . . . . 5 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dibval2 40318 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}))
983adant3 1130 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}))
101, 2, 3, 4, 5, 6, 7dibval2 40318 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (πΌβ€˜π‘Œ) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}))
11103adant2 1129 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (πΌβ€˜π‘Œ) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}))
129, 11sseq12d 4014 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) βŠ† ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))})))
131, 2, 3, 7dibn0 40327 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) β‰  βˆ…)
14133adant3 1130 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) β‰  βˆ…)
159, 14eqnetrrd 3007 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) β‰  βˆ…)
16 ssxpb 6172 . . 3 (((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) β‰  βˆ… β†’ (((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) βŠ† ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) ↔ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) ∧ {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))})))
1715, 16syl 17 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) βŠ† ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) ↔ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) ∧ {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))})))
18 ssid 4003 . . . 4 {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}
1918biantru 528 . . 3 ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) ↔ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) ∧ {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}))
201, 2, 3, 6diaord 40221 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
2119, 20bitr3id 284 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Œ) ∧ {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) ↔ 𝑋 ≀ π‘Œ))
2212, 17, 213bitrd 304 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673   β†Ύ cres 5677  β€˜cfv 6542  Basecbs 17148  lecple 17208  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  DIsoAcdia 40202  DIsoBcdib 40312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333  df-disoa 40203  df-dib 40313
This theorem is referenced by:  dib11N  40334  cdlemn2a  40370  dihord1  40392  dihord3  40431  dihord5b  40433
  Copyright terms: Public domain W3C validator