![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supfz | Structured version Visualization version GIF version |
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
Ref | Expression |
---|---|
supfz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre 12571 | . . . 4 ⊢ ℤ ⊆ ℝ | |
2 | ltso 11300 | . . . 4 ⊢ < Or ℝ | |
3 | soss 5609 | . . . 4 ⊢ (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ)) | |
4 | 1, 2, 3 | mp2 9 | . . 3 ⊢ < Or ℤ |
5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → < Or ℤ) |
6 | eluzelz 12838 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
7 | eluzfz2 13515 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
8 | elfzle2 13511 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ≤ 𝑁) | |
9 | 8 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝑁) |
10 | elfzelz 13507 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
11 | 10 | zred 12672 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
12 | eluzelre 12839 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
13 | lenlt 11298 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥)) | |
14 | 11, 12, 13 | syl2anr 595 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥)) |
15 | 9, 14 | mpbid 231 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑥) |
16 | 5, 6, 7, 15 | supmax 9466 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⊆ wss 3949 class class class wbr 5149 Or wor 5588 ‘cfv 6544 (class class class)co 7413 supcsup 9439 ℝcr 11113 < clt 11254 ≤ cle 11255 ℤcz 12564 ℤ≥cuz 12828 ...cfz 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-neg 11453 df-z 12565 df-uz 12829 df-fz 13491 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |