| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supfz | Structured version Visualization version GIF version | ||
| Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
| Ref | Expression |
|---|---|
| supfz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssre 12470 | . . . 4 ⊢ ℤ ⊆ ℝ | |
| 2 | ltso 11188 | . . . 4 ⊢ < Or ℝ | |
| 3 | soss 5539 | . . . 4 ⊢ (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ)) | |
| 4 | 1, 2, 3 | mp2 9 | . . 3 ⊢ < Or ℤ |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → < Or ℤ) |
| 6 | eluzelz 12737 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 7 | eluzfz2 13427 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 8 | elfzle2 13423 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ≤ 𝑁) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝑁) |
| 10 | elfzelz 13419 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 11 | 10 | zred 12572 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
| 12 | eluzelre 12738 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
| 13 | lenlt 11186 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥)) | |
| 14 | 11, 12, 13 | syl2anr 597 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥)) |
| 15 | 9, 14 | mpbid 232 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑥) |
| 16 | 5, 6, 7, 15 | supmax 9347 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 Or wor 5518 ‘cfv 6476 (class class class)co 7341 supcsup 9319 ℝcr 11000 < clt 11141 ≤ cle 11142 ℤcz 12463 ℤ≥cuz 12727 ...cfz 13402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-neg 11342 df-z 12464 df-uz 12728 df-fz 13403 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |