Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > supfz | Structured version Visualization version GIF version |
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
Ref | Expression |
---|---|
supfz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre 12040 | . . . 4 ⊢ ℤ ⊆ ℝ | |
2 | ltso 10772 | . . . 4 ⊢ < Or ℝ | |
3 | soss 5466 | . . . 4 ⊢ (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ)) | |
4 | 1, 2, 3 | mp2 9 | . . 3 ⊢ < Or ℤ |
5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → < Or ℤ) |
6 | eluzelz 12305 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
7 | eluzfz2 12977 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
8 | elfzle2 12973 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ≤ 𝑁) | |
9 | 8 | adantl 485 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝑁) |
10 | elfzelz 12969 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
11 | 10 | zred 12139 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
12 | eluzelre 12306 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
13 | lenlt 10770 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥)) | |
14 | 11, 12, 13 | syl2anr 599 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥)) |
15 | 9, 14 | mpbid 235 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑥) |
16 | 5, 6, 7, 15 | supmax 8977 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 class class class wbr 5036 Or wor 5446 ‘cfv 6340 (class class class)co 7156 supcsup 8950 ℝcr 10587 < clt 10726 ≤ cle 10727 ℤcz 12033 ℤ≥cuz 12295 ...cfz 12952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-pre-lttri 10662 ax-pre-lttrn 10663 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-neg 10924 df-z 12034 df-uz 12296 df-fz 12953 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |