| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supcl | Structured version Visualization version GIF version | ||
| Description: A supremum belongs to its base class (closure law). See also supub 9476 and suplub 9477. (Contributed by NM, 12-Oct-2004.) |
| Ref | Expression |
|---|---|
| supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| supcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| Ref | Expression |
|---|---|
| supcl | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | 1 | supval2 9472 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
| 3 | supcl.2 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
| 4 | 1, 3 | supeu 9471 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 5 | riotacl 7384 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ 𝐴) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ 𝐴) |
| 7 | 2, 6 | eqeltrd 2835 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ∃!wreu 3362 class class class wbr 5124 Or wor 5565 ℩crio 7366 supcsup 9457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-po 5566 df-so 5567 df-iota 6489 df-riota 7367 df-sup 9459 |
| This theorem is referenced by: suplub2 9478 supssd 9480 supiso 9493 infcl 9506 inflb 9507 infglb 9508 infglbb 9509 suprcl 12207 supxrcl 13336 xrsupssd 13354 dgrcl 26195 esum2d 34129 oddpwdc 34391 supclt 37767 supinf 42260 sn-suprcld 42483 |
| Copyright terms: Public domain | W3C validator |