Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrsupssd | Structured version Visualization version GIF version |
Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
xrsupssd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
xrsupssd.2 | ⊢ (𝜑 → 𝐶 ⊆ ℝ*) |
Ref | Expression |
---|---|
xrsupssd | ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12617 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ*) |
3 | xrsupssd.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | xrsupssd.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ ℝ*) | |
5 | 3, 4 | sstrd 3887 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
6 | xrsupss 12785 | . . . 4 ⊢ (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧))) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧))) |
8 | xrsupss 12785 | . . . 4 ⊢ (𝐶 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐶 𝑦 < 𝑧))) | |
9 | 4, 8 | syl 17 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐶 𝑦 < 𝑧))) |
10 | 2, 3, 4, 7, 9 | supssd 30619 | . 2 ⊢ (𝜑 → ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )) |
11 | 2, 7 | supcl 8995 | . . 3 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
12 | 2, 9 | supcl 8995 | . . 3 ⊢ (𝜑 → sup(𝐶, ℝ*, < ) ∈ ℝ*) |
13 | xrlenlt 10784 | . . 3 ⊢ ((sup(𝐵, ℝ*, < ) ∈ ℝ* ∧ sup(𝐶, ℝ*, < ) ∈ ℝ*) → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < ))) | |
14 | 11, 12, 13 | syl2anc 587 | . 2 ⊢ (𝜑 → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < ))) |
15 | 10, 14 | mpbird 260 | 1 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2114 ∀wral 3053 ∃wrex 3054 ⊆ wss 3843 class class class wbr 5030 Or wor 5441 supcsup 8977 ℝ*cxr 10752 < clt 10753 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |