Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsupssd Structured version   Visualization version   GIF version

Theorem xrsupssd 32763
Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
xrsupssd.1 (𝜑𝐵𝐶)
xrsupssd.2 (𝜑𝐶 ⊆ ℝ*)
Assertion
Ref Expression
xrsupssd (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ))

Proof of Theorem xrsupssd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13183 . . . 4 < Or ℝ*
21a1i 11 . . 3 (𝜑 → < Or ℝ*)
3 xrsupssd.1 . . 3 (𝜑𝐵𝐶)
4 xrsupssd.2 . . 3 (𝜑𝐶 ⊆ ℝ*)
53, 4sstrd 3994 . . . 4 (𝜑𝐵 ⊆ ℝ*)
6 xrsupss 13351 . . . 4 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
75, 6syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
8 xrsupss 13351 . . . 4 (𝐶 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐶 𝑦 < 𝑧)))
94, 8syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐶 𝑦 < 𝑧)))
102, 3, 4, 7, 9supssd 32721 . 2 (𝜑 → ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < ))
112, 7supcl 9498 . . 3 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
122, 9supcl 9498 . . 3 (𝜑 → sup(𝐶, ℝ*, < ) ∈ ℝ*)
13 xrlenlt 11326 . . 3 ((sup(𝐵, ℝ*, < ) ∈ ℝ* ∧ sup(𝐶, ℝ*, < ) ∈ ℝ*) → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )))
1411, 12, 13syl2anc 584 . 2 (𝜑 → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )))
1510, 14mpbird 257 1 (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143   Or wor 5591  supcsup 9480  *cxr 11294   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator