MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupssd Structured version   Visualization version   GIF version

Theorem xrsupssd 13293
Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
xrsupssd.1 (𝜑𝐵𝐶)
xrsupssd.2 (𝜑𝐶 ⊆ ℝ*)
Assertion
Ref Expression
xrsupssd (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ))

Proof of Theorem xrsupssd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13101 . . . 4 < Or ℝ*
21a1i 11 . . 3 (𝜑 → < Or ℝ*)
3 xrsupssd.1 . . 3 (𝜑𝐵𝐶)
4 xrsupssd.2 . . 3 (𝜑𝐶 ⊆ ℝ*)
53, 4sstrd 3957 . . . 4 (𝜑𝐵 ⊆ ℝ*)
6 xrsupss 13269 . . . 4 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
75, 6syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
8 xrsupss 13269 . . . 4 (𝐶 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐶 𝑦 < 𝑧)))
94, 8syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐶 𝑦 < 𝑧)))
102, 3, 4, 7, 9supssd 9414 . 2 (𝜑 → ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < ))
112, 7supcl 9409 . . 3 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
122, 9supcl 9409 . . 3 (𝜑 → sup(𝐶, ℝ*, < ) ∈ ℝ*)
13 xrlenlt 11239 . . 3 ((sup(𝐵, ℝ*, < ) ∈ ℝ* ∧ sup(𝐶, ℝ*, < ) ∈ ℝ*) → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )))
1411, 12, 13syl2anc 584 . 2 (𝜑 → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )))
1510, 14mpbird 257 1 (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   Or wor 5545  supcsup 9391  *cxr 11207   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  liminflelimsuplem  45773
  Copyright terms: Public domain W3C validator