Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrsupssd | Structured version Visualization version GIF version |
Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
xrsupssd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
xrsupssd.2 | ⊢ (𝜑 → 𝐶 ⊆ ℝ*) |
Ref | Expression |
---|---|
xrsupssd | ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12804 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ*) |
3 | xrsupssd.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | xrsupssd.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ ℝ*) | |
5 | 3, 4 | sstrd 3927 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
6 | xrsupss 12972 | . . . 4 ⊢ (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧))) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧))) |
8 | xrsupss 12972 | . . . 4 ⊢ (𝐶 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐶 𝑦 < 𝑧))) | |
9 | 4, 8 | syl 17 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐶 𝑦 < 𝑧))) |
10 | 2, 3, 4, 7, 9 | supssd 30946 | . 2 ⊢ (𝜑 → ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )) |
11 | 2, 7 | supcl 9147 | . . 3 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
12 | 2, 9 | supcl 9147 | . . 3 ⊢ (𝜑 → sup(𝐶, ℝ*, < ) ∈ ℝ*) |
13 | xrlenlt 10971 | . . 3 ⊢ ((sup(𝐵, ℝ*, < ) ∈ ℝ* ∧ sup(𝐶, ℝ*, < ) ∈ ℝ*) → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < ))) | |
14 | 11, 12, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < ))) |
15 | 10, 14 | mpbird 256 | 1 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 Or wor 5493 supcsup 9129 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |