Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsupssd Structured version   Visualization version   GIF version

Theorem xrsupssd 31711
Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
xrsupssd.1 (𝜑𝐵𝐶)
xrsupssd.2 (𝜑𝐶 ⊆ ℝ*)
Assertion
Ref Expression
xrsupssd (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ))

Proof of Theorem xrsupssd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13066 . . . 4 < Or ℝ*
21a1i 11 . . 3 (𝜑 → < Or ℝ*)
3 xrsupssd.1 . . 3 (𝜑𝐵𝐶)
4 xrsupssd.2 . . 3 (𝜑𝐶 ⊆ ℝ*)
53, 4sstrd 3955 . . . 4 (𝜑𝐵 ⊆ ℝ*)
6 xrsupss 13234 . . . 4 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
75, 6syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
8 xrsupss 13234 . . . 4 (𝐶 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐶 𝑦 < 𝑧)))
94, 8syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐶 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐶 𝑦 < 𝑧)))
102, 3, 4, 7, 9supssd 31673 . 2 (𝜑 → ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < ))
112, 7supcl 9399 . . 3 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
122, 9supcl 9399 . . 3 (𝜑 → sup(𝐶, ℝ*, < ) ∈ ℝ*)
13 xrlenlt 11225 . . 3 ((sup(𝐵, ℝ*, < ) ∈ ℝ* ∧ sup(𝐶, ℝ*, < ) ∈ ℝ*) → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )))
1411, 12, 13syl2anc 585 . 2 (𝜑 → (sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ) ↔ ¬ sup(𝐶, ℝ*, < ) < sup(𝐵, ℝ*, < )))
1510, 14mpbird 257 1 (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wral 3061  wrex 3070  wss 3911   class class class wbr 5106   Or wor 5545  supcsup 9381  *cxr 11193   < clt 11194  cle 11195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator