Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > infssd | Structured version Visualization version GIF version |
Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infssd.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
infssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
infssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infssd | ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | infssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
3 | 1, 2 | infcl 9177 | . 2 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
4 | infssd.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
5 | 4 | sseld 3916 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵)) |
6 | 1, 2 | inflb 9178 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
8 | 7 | ralrimiv 3106 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) |
9 | infssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
10 | 1, 9 | infnlb 9181 | . 2 ⊢ (𝜑 → ((inf(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅))) |
11 | 3, 8, 10 | mp2and 695 | 1 ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 Or wor 5493 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-cnv 5588 df-iota 6376 df-riota 7212 df-sup 9131 df-inf 9132 |
This theorem is referenced by: xrge0infssd 30986 |
Copyright terms: Public domain | W3C validator |