![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infssd | Structured version Visualization version GIF version |
Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infssd.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
infssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
infssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infssd | ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | infssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
3 | 1, 2 | infcl 9512 | . 2 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
4 | infssd.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
5 | 4 | sseld 3979 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵)) |
6 | 1, 2 | inflb 9513 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
8 | 7 | ralrimiv 3142 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) |
9 | infssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
10 | 1, 9 | infnlb 9516 | . 2 ⊢ (𝜑 → ((inf(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅))) |
11 | 3, 8, 10 | mp2and 698 | 1 ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ⊆ wss 3947 class class class wbr 5148 Or wor 5589 infcinf 9465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-po 5590 df-so 5591 df-cnv 5686 df-iota 6500 df-riota 7376 df-sup 9466 df-inf 9467 |
This theorem is referenced by: xrge0infssd 32544 |
Copyright terms: Public domain | W3C validator |