![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infssd | Structured version Visualization version GIF version |
Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infssd.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
infssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
infssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infssd | ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | infssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
3 | 1, 2 | infcl 9557 | . 2 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
4 | infssd.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
5 | 4 | sseld 4007 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵)) |
6 | 1, 2 | inflb 9558 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
8 | 7 | ralrimiv 3151 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) |
9 | infssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
10 | 1, 9 | infnlb 9561 | . 2 ⊢ (𝜑 → ((inf(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅))) |
11 | 3, 8, 10 | mp2and 698 | 1 ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 Or wor 5606 infcinf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-po 5607 df-so 5608 df-cnv 5708 df-iota 6525 df-riota 7404 df-sup 9511 df-inf 9512 |
This theorem is referenced by: xrge0infssd 32768 |
Copyright terms: Public domain | W3C validator |