MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infssd Structured version   Visualization version   GIF version

Theorem infssd 9445
Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
infssd.0 (𝜑𝑅 Or 𝐴)
infssd.1 (𝜑𝐶𝐵)
infssd.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
infssd.4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infssd (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infssd
StepHypRef Expression
1 infssd.0 . . 3 (𝜑𝑅 Or 𝐴)
2 infssd.4 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
31, 2infcl 9440 . 2 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
4 infssd.1 . . . . 5 (𝜑𝐶𝐵)
54sseld 3945 . . . 4 (𝜑 → (𝑧𝐶𝑧𝐵))
61, 2inflb 9441 . . . 4 (𝜑 → (𝑧𝐵 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)))
75, 6syld 47 . . 3 (𝜑 → (𝑧𝐶 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)))
87ralrimiv 3124 . 2 (𝜑 → ∀𝑧𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))
9 infssd.3 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
101, 9infnlb 9444 . 2 (𝜑 → ((inf(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)))
113, 8, 10mp2and 699 1 (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   Or wor 5545  infcinf 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-po 5546  df-so 5547  df-cnv 5646  df-iota 6464  df-riota 7344  df-sup 9393  df-inf 9394
This theorem is referenced by:  xrge0infssd  32684
  Copyright terms: Public domain W3C validator