Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme | Structured version Visualization version GIF version |
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.) |
Ref | Expression |
---|---|
cdleme.l | ⊢ ≤ = (le‘𝐾) |
cdleme.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdleme | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdleme.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdleme.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdleme50ex 38835 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
6 | simp11 1202 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simp2l 1198 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 ∈ 𝑇) | |
8 | simp2r 1199 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑧 ∈ 𝑇) | |
9 | simp12 1203 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
10 | eqtr3 2762 | . . . . . 6 ⊢ (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
11 | 10 | 3ad2ant3 1134 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑓‘𝑃) = (𝑧‘𝑃)) |
12 | 1, 2, 3, 4 | cdlemd 38483 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑓‘𝑃) = (𝑧‘𝑃)) → 𝑓 = 𝑧) |
13 | 6, 7, 8, 9, 11, 12 | syl311anc 1383 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 = 𝑧) |
14 | 13 | 3exp 1118 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
15 | 14 | ralrimivv 3191 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧)) |
16 | fveq1 6824 | . . . 4 ⊢ (𝑓 = 𝑧 → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
17 | 16 | eqeq1d 2738 | . . 3 ⊢ (𝑓 = 𝑧 → ((𝑓‘𝑃) = 𝑄 ↔ (𝑧‘𝑃) = 𝑄)) |
18 | 17 | reu4 3677 | . 2 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ↔ (∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ∧ ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
19 | 5, 15, 18 | sylanbrc 583 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ∃!wreu 3347 class class class wbr 5092 ‘cfv 6479 lecple 17066 Atomscatm 37538 HLchlt 37625 LHypclh 38260 LTrncltrn 38377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-riotaBAD 37228 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-undef 8159 df-map 8688 df-proset 18110 df-poset 18128 df-plt 18145 df-lub 18161 df-glb 18162 df-join 18163 df-meet 18164 df-p0 18240 df-p1 18241 df-lat 18247 df-clat 18314 df-oposet 37451 df-ol 37453 df-oml 37454 df-covers 37541 df-ats 37542 df-atl 37573 df-cvlat 37597 df-hlat 37626 df-llines 37774 df-lplanes 37775 df-lvols 37776 df-lines 37777 df-psubsp 37779 df-pmap 37780 df-padd 38072 df-lhyp 38264 df-laut 38265 df-ldil 38380 df-ltrn 38381 df-trl 38435 |
This theorem is referenced by: ltrniotaval 38857 cdlemeiota 38861 cdlemksv2 39123 cdlemkuv2 39143 |
Copyright terms: Public domain | W3C validator |