Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme Structured version   Visualization version   GIF version

Theorem cdleme 40562
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l = (le‘𝐾)
cdleme.a 𝐴 = (Atoms‘𝐾)
cdleme.h 𝐻 = (LHyp‘𝐾)
cdleme.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleme (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝐻

Proof of Theorem cdleme
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cdleme.l . . 3 = (le‘𝐾)
2 cdleme.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdleme.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdleme.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdleme50ex 40561 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)
6 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2l 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓𝑇)
8 simp2r 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑧𝑇)
9 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10 eqtr3 2763 . . . . . 6 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → (𝑓𝑃) = (𝑧𝑃))
11103ad2ant3 1136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑓𝑃) = (𝑧𝑃))
121, 2, 3, 4cdlemd 40209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑧𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑓𝑃) = (𝑧𝑃)) → 𝑓 = 𝑧)
136, 7, 8, 9, 11, 12syl311anc 1386 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓 = 𝑧)
14133exp 1120 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑓𝑇𝑧𝑇) → (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
1514ralrimivv 3200 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧))
16 fveq1 6905 . . . 4 (𝑓 = 𝑧 → (𝑓𝑃) = (𝑧𝑃))
1716eqeq1d 2739 . . 3 (𝑓 = 𝑧 → ((𝑓𝑃) = 𝑄 ↔ (𝑧𝑃) = 𝑄))
1817reu4 3737 . 2 (∃!𝑓𝑇 (𝑓𝑃) = 𝑄 ↔ (∃𝑓𝑇 (𝑓𝑃) = 𝑄 ∧ ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
195, 15, 18sylanbrc 583 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  ∃!wreu 3378   class class class wbr 5143  cfv 6561  lecple 17304  Atomscatm 39264  HLchlt 39351  LHypclh 39986  LTrncltrn 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-undef 8298  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161
This theorem is referenced by:  ltrniotaval  40583  cdlemeiota  40587  cdlemksv2  40849  cdlemkuv2  40869
  Copyright terms: Public domain W3C validator