| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme | Structured version Visualization version GIF version | ||
| Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdleme.l | ⊢ ≤ = (le‘𝐾) |
| cdleme.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdleme | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdleme.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | cdleme.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | cdleme.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | cdleme50ex 40558 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
| 6 | simp11 1204 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | simp2l 1200 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 ∈ 𝑇) | |
| 8 | simp2r 1201 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑧 ∈ 𝑇) | |
| 9 | simp12 1205 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 10 | eqtr3 2751 | . . . . . 6 ⊢ (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
| 11 | 10 | 3ad2ant3 1135 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑓‘𝑃) = (𝑧‘𝑃)) |
| 12 | 1, 2, 3, 4 | cdlemd 40206 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑓‘𝑃) = (𝑧‘𝑃)) → 𝑓 = 𝑧) |
| 13 | 6, 7, 8, 9, 11, 12 | syl311anc 1386 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 = 𝑧) |
| 14 | 13 | 3exp 1119 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
| 15 | 14 | ralrimivv 3170 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧)) |
| 16 | fveq1 6825 | . . . 4 ⊢ (𝑓 = 𝑧 → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
| 17 | 16 | eqeq1d 2731 | . . 3 ⊢ (𝑓 = 𝑧 → ((𝑓‘𝑃) = 𝑄 ↔ (𝑧‘𝑃) = 𝑄)) |
| 18 | 17 | reu4 3693 | . 2 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ↔ (∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ∧ ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
| 19 | 5, 15, 18 | sylanbrc 583 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∃!wreu 3343 class class class wbr 5095 ‘cfv 6486 lecple 17187 Atomscatm 39261 HLchlt 39348 LHypclh 39983 LTrncltrn 40100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-riotaBAD 38951 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-undef 8213 df-map 8762 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-join 18271 df-meet 18272 df-p0 18348 df-p1 18349 df-lat 18357 df-clat 18424 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 df-llines 39497 df-lplanes 39498 df-lvols 39499 df-lines 39500 df-psubsp 39502 df-pmap 39503 df-padd 39795 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 df-trl 40158 |
| This theorem is referenced by: ltrniotaval 40580 cdlemeiota 40584 cdlemksv2 40846 cdlemkuv2 40866 |
| Copyright terms: Public domain | W3C validator |