![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme | Structured version Visualization version GIF version |
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.) |
Ref | Expression |
---|---|
cdleme.l | ⊢ ≤ = (le‘𝐾) |
cdleme.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdleme | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdleme.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdleme.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdleme50ex 40164 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
6 | simp11 1200 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simp2l 1196 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 ∈ 𝑇) | |
8 | simp2r 1197 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑧 ∈ 𝑇) | |
9 | simp12 1201 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
10 | eqtr3 2751 | . . . . . 6 ⊢ (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
11 | 10 | 3ad2ant3 1132 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑓‘𝑃) = (𝑧‘𝑃)) |
12 | 1, 2, 3, 4 | cdlemd 39812 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑓‘𝑃) = (𝑧‘𝑃)) → 𝑓 = 𝑧) |
13 | 6, 7, 8, 9, 11, 12 | syl311anc 1381 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 = 𝑧) |
14 | 13 | 3exp 1116 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
15 | 14 | ralrimivv 3188 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧)) |
16 | fveq1 6895 | . . . 4 ⊢ (𝑓 = 𝑧 → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
17 | 16 | eqeq1d 2727 | . . 3 ⊢ (𝑓 = 𝑧 → ((𝑓‘𝑃) = 𝑄 ↔ (𝑧‘𝑃) = 𝑄)) |
18 | 17 | reu4 3723 | . 2 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ↔ (∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ∧ ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
19 | 5, 15, 18 | sylanbrc 581 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 ∃!wreu 3361 class class class wbr 5149 ‘cfv 6549 lecple 17248 Atomscatm 38867 HLchlt 38954 LHypclh 39589 LTrncltrn 39706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-riotaBAD 38557 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-undef 8279 df-map 8847 df-proset 18295 df-poset 18313 df-plt 18330 df-lub 18346 df-glb 18347 df-join 18348 df-meet 18349 df-p0 18425 df-p1 18426 df-lat 18432 df-clat 18499 df-oposet 38780 df-ol 38782 df-oml 38783 df-covers 38870 df-ats 38871 df-atl 38902 df-cvlat 38926 df-hlat 38955 df-llines 39103 df-lplanes 39104 df-lvols 39105 df-lines 39106 df-psubsp 39108 df-pmap 39109 df-padd 39401 df-lhyp 39593 df-laut 39594 df-ldil 39709 df-ltrn 39710 df-trl 39764 |
This theorem is referenced by: ltrniotaval 40186 cdlemeiota 40190 cdlemksv2 40452 cdlemkuv2 40472 |
Copyright terms: Public domain | W3C validator |