Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme Structured version   Visualization version   GIF version

Theorem cdleme 40561
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l = (le‘𝐾)
cdleme.a 𝐴 = (Atoms‘𝐾)
cdleme.h 𝐻 = (LHyp‘𝐾)
cdleme.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleme (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝐻

Proof of Theorem cdleme
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cdleme.l . . 3 = (le‘𝐾)
2 cdleme.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdleme.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdleme.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdleme50ex 40560 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)
6 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2l 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓𝑇)
8 simp2r 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑧𝑇)
9 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10 eqtr3 2752 . . . . . 6 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → (𝑓𝑃) = (𝑧𝑃))
11103ad2ant3 1135 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑓𝑃) = (𝑧𝑃))
121, 2, 3, 4cdlemd 40208 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑧𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑓𝑃) = (𝑧𝑃)) → 𝑓 = 𝑧)
136, 7, 8, 9, 11, 12syl311anc 1386 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓 = 𝑧)
14133exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑓𝑇𝑧𝑇) → (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
1514ralrimivv 3179 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧))
16 fveq1 6860 . . . 4 (𝑓 = 𝑧 → (𝑓𝑃) = (𝑧𝑃))
1716eqeq1d 2732 . . 3 (𝑓 = 𝑧 → ((𝑓𝑃) = 𝑄 ↔ (𝑧𝑃) = 𝑄))
1817reu4 3705 . 2 (∃!𝑓𝑇 (𝑓𝑃) = 𝑄 ↔ (∃𝑓𝑇 (𝑓𝑃) = 𝑄 ∧ ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
195, 15, 18sylanbrc 583 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354   class class class wbr 5110  cfv 6514  lecple 17234  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  ltrniotaval  40582  cdlemeiota  40586  cdlemksv2  40848  cdlemkuv2  40868
  Copyright terms: Public domain W3C validator