Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme Structured version   Visualization version   GIF version

Theorem cdleme 39735
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l ≀ = (leβ€˜πΎ)
cdleme.a 𝐴 = (Atomsβ€˜πΎ)
cdleme.h 𝐻 = (LHypβ€˜πΎ)
cdleme.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdleme (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆƒ!𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾   ≀ ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,π‘Š   𝑓,𝐻

Proof of Theorem cdleme
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cdleme.l . . 3 ≀ = (leβ€˜πΎ)
2 cdleme.a . . 3 𝐴 = (Atomsβ€˜πΎ)
3 cdleme.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 cdleme.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4cdleme50ex 39734 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆƒπ‘“ ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
6 simp11 1202 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
7 simp2l 1198 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄)) β†’ 𝑓 ∈ 𝑇)
8 simp2r 1199 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄)) β†’ 𝑧 ∈ 𝑇)
9 simp12 1203 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
10 eqtr3 2757 . . . . . 6 (((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄) β†’ (π‘“β€˜π‘ƒ) = (π‘§β€˜π‘ƒ))
11103ad2ant3 1134 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄)) β†’ (π‘“β€˜π‘ƒ) = (π‘§β€˜π‘ƒ))
121, 2, 3, 4cdlemd 39382 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘“β€˜π‘ƒ) = (π‘§β€˜π‘ƒ)) β†’ 𝑓 = 𝑧)
136, 7, 8, 9, 11, 12syl311anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄)) β†’ 𝑓 = 𝑧)
14133exp 1118 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) β†’ (((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄) β†’ 𝑓 = 𝑧)))
1514ralrimivv 3197 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆ€π‘“ ∈ 𝑇 βˆ€π‘§ ∈ 𝑇 (((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄) β†’ 𝑓 = 𝑧))
16 fveq1 6890 . . . 4 (𝑓 = 𝑧 β†’ (π‘“β€˜π‘ƒ) = (π‘§β€˜π‘ƒ))
1716eqeq1d 2733 . . 3 (𝑓 = 𝑧 β†’ ((π‘“β€˜π‘ƒ) = 𝑄 ↔ (π‘§β€˜π‘ƒ) = 𝑄))
1817reu4 3727 . 2 (βˆƒ!𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄 ↔ (βˆƒπ‘“ ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄 ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘§ ∈ 𝑇 (((π‘“β€˜π‘ƒ) = 𝑄 ∧ (π‘§β€˜π‘ƒ) = 𝑄) β†’ 𝑓 = 𝑧)))
195, 15, 18sylanbrc 582 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆƒ!𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  βˆƒ!wreu 3373   class class class wbr 5148  β€˜cfv 6543  lecple 17209  Atomscatm 38437  HLchlt 38524  LHypclh 39159  LTrncltrn 39276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-undef 8261  df-map 8825  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279  df-ltrn 39280  df-trl 39334
This theorem is referenced by:  ltrniotaval  39756  cdlemeiota  39760  cdlemksv2  40022  cdlemkuv2  40042
  Copyright terms: Public domain W3C validator