Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme | Structured version Visualization version GIF version |
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.) |
Ref | Expression |
---|---|
cdleme.l | ⊢ ≤ = (le‘𝐾) |
cdleme.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdleme | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdleme.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdleme.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdleme50ex 38310 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
6 | simp11 1205 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simp2l 1201 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 ∈ 𝑇) | |
8 | simp2r 1202 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑧 ∈ 𝑇) | |
9 | simp12 1206 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
10 | eqtr3 2763 | . . . . . 6 ⊢ (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
11 | 10 | 3ad2ant3 1137 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → (𝑓‘𝑃) = (𝑧‘𝑃)) |
12 | 1, 2, 3, 4 | cdlemd 37958 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑓‘𝑃) = (𝑧‘𝑃)) → 𝑓 = 𝑧) |
13 | 6, 7, 8, 9, 11, 12 | syl311anc 1386 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ ((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄)) → 𝑓 = 𝑧) |
14 | 13 | 3exp 1121 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
15 | 14 | ralrimivv 3111 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧)) |
16 | fveq1 6716 | . . . 4 ⊢ (𝑓 = 𝑧 → (𝑓‘𝑃) = (𝑧‘𝑃)) | |
17 | 16 | eqeq1d 2739 | . . 3 ⊢ (𝑓 = 𝑧 → ((𝑓‘𝑃) = 𝑄 ↔ (𝑧‘𝑃) = 𝑄)) |
18 | 17 | reu4 3644 | . 2 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ↔ (∃𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 ∧ ∀𝑓 ∈ 𝑇 ∀𝑧 ∈ 𝑇 (((𝑓‘𝑃) = 𝑄 ∧ (𝑧‘𝑃) = 𝑄) → 𝑓 = 𝑧))) |
19 | 5, 15, 18 | sylanbrc 586 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ∃!wreu 3063 class class class wbr 5053 ‘cfv 6380 lecple 16809 Atomscatm 37014 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-undef 8015 df-map 8510 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 |
This theorem is referenced by: ltrniotaval 38332 cdlemeiota 38336 cdlemksv2 38598 cdlemkuv2 38618 |
Copyright terms: Public domain | W3C validator |