Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme Structured version   Visualization version   GIF version

Theorem cdleme 40517
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l = (le‘𝐾)
cdleme.a 𝐴 = (Atoms‘𝐾)
cdleme.h 𝐻 = (LHyp‘𝐾)
cdleme.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleme (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝐻

Proof of Theorem cdleme
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cdleme.l . . 3 = (le‘𝐾)
2 cdleme.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdleme.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdleme.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdleme50ex 40516 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)
6 simp11 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2l 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓𝑇)
8 simp2r 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑧𝑇)
9 simp12 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10 eqtr3 2766 . . . . . 6 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → (𝑓𝑃) = (𝑧𝑃))
11103ad2ant3 1135 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑓𝑃) = (𝑧𝑃))
121, 2, 3, 4cdlemd 40164 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑧𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑓𝑃) = (𝑧𝑃)) → 𝑓 = 𝑧)
136, 7, 8, 9, 11, 12syl311anc 1384 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓 = 𝑧)
14133exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑓𝑇𝑧𝑇) → (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
1514ralrimivv 3206 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧))
16 fveq1 6919 . . . 4 (𝑓 = 𝑧 → (𝑓𝑃) = (𝑧𝑃))
1716eqeq1d 2742 . . 3 (𝑓 = 𝑧 → ((𝑓𝑃) = 𝑄 ↔ (𝑧𝑃) = 𝑄))
1817reu4 3753 . 2 (∃!𝑓𝑇 (𝑓𝑃) = 𝑄 ↔ (∃𝑓𝑇 (𝑓𝑃) = 𝑄 ∧ ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
195, 15, 18sylanbrc 582 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386   class class class wbr 5166  cfv 6573  lecple 17318  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  ltrniotaval  40538  cdlemeiota  40542  cdlemksv2  40804  cdlemkuv2  40824
  Copyright terms: Public domain W3C validator