Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme Structured version   Visualization version   GIF version

Theorem cdleme 40165
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l = (le‘𝐾)
cdleme.a 𝐴 = (Atoms‘𝐾)
cdleme.h 𝐻 = (LHyp‘𝐾)
cdleme.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleme (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝐻

Proof of Theorem cdleme
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cdleme.l . . 3 = (le‘𝐾)
2 cdleme.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdleme.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdleme.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdleme50ex 40164 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)
6 simp11 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2l 1196 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓𝑇)
8 simp2r 1197 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑧𝑇)
9 simp12 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10 eqtr3 2751 . . . . . 6 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → (𝑓𝑃) = (𝑧𝑃))
11103ad2ant3 1132 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → (𝑓𝑃) = (𝑧𝑃))
121, 2, 3, 4cdlemd 39812 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑧𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑓𝑃) = (𝑧𝑃)) → 𝑓 = 𝑧)
136, 7, 8, 9, 11, 12syl311anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓𝑇𝑧𝑇) ∧ ((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄)) → 𝑓 = 𝑧)
14133exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑓𝑇𝑧𝑇) → (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
1514ralrimivv 3188 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧))
16 fveq1 6895 . . . 4 (𝑓 = 𝑧 → (𝑓𝑃) = (𝑧𝑃))
1716eqeq1d 2727 . . 3 (𝑓 = 𝑧 → ((𝑓𝑃) = 𝑄 ↔ (𝑧𝑃) = 𝑄))
1817reu4 3723 . 2 (∃!𝑓𝑇 (𝑓𝑃) = 𝑄 ↔ (∃𝑓𝑇 (𝑓𝑃) = 𝑄 ∧ ∀𝑓𝑇𝑧𝑇 (((𝑓𝑃) = 𝑄 ∧ (𝑧𝑃) = 𝑄) → 𝑓 = 𝑧)))
195, 15, 18sylanbrc 581 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  ∃!wreu 3361   class class class wbr 5149  cfv 6549  lecple 17248  Atomscatm 38867  HLchlt 38954  LHypclh 39589  LTrncltrn 39706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-riotaBAD 38557
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-undef 8279  df-map 8847  df-proset 18295  df-poset 18313  df-plt 18330  df-lub 18346  df-glb 18347  df-join 18348  df-meet 18349  df-p0 18425  df-p1 18426  df-lat 18432  df-clat 18499  df-oposet 38780  df-ol 38782  df-oml 38783  df-covers 38870  df-ats 38871  df-atl 38902  df-cvlat 38926  df-hlat 38955  df-llines 39103  df-lplanes 39104  df-lvols 39105  df-lines 39106  df-psubsp 39108  df-pmap 39109  df-padd 39401  df-lhyp 39593  df-laut 39594  df-ldil 39709  df-ltrn 39710  df-trl 39764
This theorem is referenced by:  ltrniotaval  40186  cdlemeiota  40190  cdlemksv2  40452  cdlemkuv2  40472
  Copyright terms: Public domain W3C validator