Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2atne Structured version   Visualization version   GIF version

Theorem lhp2atne 39208
Description: Inequality for joins with 2 different atoms under co-atom π‘Š. (Contributed by NM, 22-Jul-2013.)
Hypotheses
Ref Expression
lhp2atnle.l ≀ = (leβ€˜πΎ)
lhp2atnle.j ∨ = (joinβ€˜πΎ)
lhp2atnle.a 𝐴 = (Atomsβ€˜πΎ)
lhp2atnle.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhp2atne ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (𝑃 ∨ π‘ˆ) β‰  (𝑄 ∨ 𝑉))

Proof of Theorem lhp2atne
StepHypRef Expression
1 simp11 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp12 1204 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simp3 1138 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ π‘ˆ β‰  𝑉)
4 simp2l 1199 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š))
5 simp2r 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))
6 lhp2atnle.l . . . 4 ≀ = (leβ€˜πΎ)
7 lhp2atnle.j . . . 4 ∨ = (joinβ€˜πΎ)
8 lhp2atnle.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
9 lhp2atnle.h . . . 4 𝐻 = (LHypβ€˜πΎ)
106, 7, 8, 9lhp2atnle 39207 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ Β¬ 𝑉 ≀ (𝑃 ∨ π‘ˆ))
111, 2, 3, 4, 5, 10syl311anc 1384 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ Β¬ 𝑉 ≀ (𝑃 ∨ π‘ˆ))
12 simp11l 1284 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ 𝐾 ∈ HL)
13 simp13 1205 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ 𝑄 ∈ 𝐴)
14 simp2rl 1242 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ 𝑉 ∈ 𝐴)
156, 7, 8hlatlej2 38549 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ 𝑉 ≀ (𝑄 ∨ 𝑉))
1612, 13, 14, 15syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ 𝑉 ≀ (𝑄 ∨ 𝑉))
1716adantr 481 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) ∧ (𝑃 ∨ π‘ˆ) = (𝑄 ∨ 𝑉)) β†’ 𝑉 ≀ (𝑄 ∨ 𝑉))
18 simpr 485 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) ∧ (𝑃 ∨ π‘ˆ) = (𝑄 ∨ 𝑉)) β†’ (𝑃 ∨ π‘ˆ) = (𝑄 ∨ 𝑉))
1917, 18breqtrrd 5176 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) ∧ (𝑃 ∨ π‘ˆ) = (𝑄 ∨ 𝑉)) β†’ 𝑉 ≀ (𝑃 ∨ π‘ˆ))
2019ex 413 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ ((𝑃 ∨ π‘ˆ) = (𝑄 ∨ 𝑉) β†’ 𝑉 ≀ (𝑃 ∨ π‘ˆ)))
2120necon3bd 2954 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (Β¬ 𝑉 ≀ (𝑃 ∨ π‘ˆ) β†’ (𝑃 ∨ π‘ˆ) β‰  (𝑄 ∨ 𝑉)))
2211, 21mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (𝑃 ∨ π‘ˆ) β‰  (𝑄 ∨ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  lecple 17208  joincjn 18268  Atomscatm 38436  HLchlt 38523  LHypclh 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162
This theorem is referenced by:  cdlemg31b0N  39868  cdlemk47  40123
  Copyright terms: Public domain W3C validator