![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmolb2d | Structured version Visualization version GIF version |
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | β’ π = (π normOp π) |
nmofval.2 | β’ π = (Baseβπ) |
nmofval.3 | β’ πΏ = (normβπ) |
nmofval.4 | β’ π = (normβπ) |
nmolb2d.z | β’ 0 = (0gβπ) |
nmolb2d.1 | β’ (π β π β NrmGrp) |
nmolb2d.2 | β’ (π β π β NrmGrp) |
nmolb2d.3 | β’ (π β πΉ β (π GrpHom π)) |
nmolb2d.4 | β’ (π β π΄ β β) |
nmolb2d.5 | β’ (π β 0 β€ π΄) |
nmolb2d.6 | β’ ((π β§ (π₯ β π β§ π₯ β 0 )) β (πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯))) |
Ref | Expression |
---|---|
nmolb2d | β’ (π β (πβπΉ) β€ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6890 | . . . . 5 β’ (π₯ = 0 β (πβ(πΉβπ₯)) = (πβ(πΉβ 0 ))) | |
2 | fveq2 6885 | . . . . . 6 β’ (π₯ = 0 β (πΏβπ₯) = (πΏβ 0 )) | |
3 | 2 | oveq2d 7421 | . . . . 5 β’ (π₯ = 0 β (π΄ Β· (πΏβπ₯)) = (π΄ Β· (πΏβ 0 ))) |
4 | 1, 3 | breq12d 5154 | . . . 4 β’ (π₯ = 0 β ((πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯)) β (πβ(πΉβ 0 )) β€ (π΄ Β· (πΏβ 0 )))) |
5 | nmolb2d.6 | . . . . 5 β’ ((π β§ (π₯ β π β§ π₯ β 0 )) β (πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯))) | |
6 | 5 | anassrs 467 | . . . 4 β’ (((π β§ π₯ β π) β§ π₯ β 0 ) β (πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯))) |
7 | 0le0 12317 | . . . . . . 7 β’ 0 β€ 0 | |
8 | nmolb2d.4 | . . . . . . . . 9 β’ (π β π΄ β β) | |
9 | 8 | recnd 11246 | . . . . . . . 8 β’ (π β π΄ β β) |
10 | 9 | mul01d 11417 | . . . . . . 7 β’ (π β (π΄ Β· 0) = 0) |
11 | 7, 10 | breqtrrid 5179 | . . . . . 6 β’ (π β 0 β€ (π΄ Β· 0)) |
12 | nmolb2d.3 | . . . . . . . . 9 β’ (π β πΉ β (π GrpHom π)) | |
13 | nmolb2d.z | . . . . . . . . . 10 β’ 0 = (0gβπ) | |
14 | eqid 2726 | . . . . . . . . . 10 β’ (0gβπ) = (0gβπ) | |
15 | 13, 14 | ghmid 19147 | . . . . . . . . 9 β’ (πΉ β (π GrpHom π) β (πΉβ 0 ) = (0gβπ)) |
16 | 12, 15 | syl 17 | . . . . . . . 8 β’ (π β (πΉβ 0 ) = (0gβπ)) |
17 | 16 | fveq2d 6889 | . . . . . . 7 β’ (π β (πβ(πΉβ 0 )) = (πβ(0gβπ))) |
18 | nmolb2d.2 | . . . . . . . 8 β’ (π β π β NrmGrp) | |
19 | nmofval.4 | . . . . . . . . 9 β’ π = (normβπ) | |
20 | 19, 14 | nm0 24493 | . . . . . . . 8 β’ (π β NrmGrp β (πβ(0gβπ)) = 0) |
21 | 18, 20 | syl 17 | . . . . . . 7 β’ (π β (πβ(0gβπ)) = 0) |
22 | 17, 21 | eqtrd 2766 | . . . . . 6 β’ (π β (πβ(πΉβ 0 )) = 0) |
23 | nmolb2d.1 | . . . . . . . 8 β’ (π β π β NrmGrp) | |
24 | nmofval.3 | . . . . . . . . 9 β’ πΏ = (normβπ) | |
25 | 24, 13 | nm0 24493 | . . . . . . . 8 β’ (π β NrmGrp β (πΏβ 0 ) = 0) |
26 | 23, 25 | syl 17 | . . . . . . 7 β’ (π β (πΏβ 0 ) = 0) |
27 | 26 | oveq2d 7421 | . . . . . 6 β’ (π β (π΄ Β· (πΏβ 0 )) = (π΄ Β· 0)) |
28 | 11, 22, 27 | 3brtr4d 5173 | . . . . 5 β’ (π β (πβ(πΉβ 0 )) β€ (π΄ Β· (πΏβ 0 ))) |
29 | 28 | adantr 480 | . . . 4 β’ ((π β§ π₯ β π) β (πβ(πΉβ 0 )) β€ (π΄ Β· (πΏβ 0 ))) |
30 | 4, 6, 29 | pm2.61ne 3021 | . . 3 β’ ((π β§ π₯ β π) β (πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯))) |
31 | 30 | ralrimiva 3140 | . 2 β’ (π β βπ₯ β π (πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯))) |
32 | nmolb2d.5 | . . 3 β’ (π β 0 β€ π΄) | |
33 | nmofval.1 | . . . 4 β’ π = (π normOp π) | |
34 | nmofval.2 | . . . 4 β’ π = (Baseβπ) | |
35 | 33, 34, 24, 19 | nmolb 24589 | . . 3 β’ (((π β NrmGrp β§ π β NrmGrp β§ πΉ β (π GrpHom π)) β§ π΄ β β β§ 0 β€ π΄) β (βπ₯ β π (πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯)) β (πβπΉ) β€ π΄)) |
36 | 23, 18, 12, 8, 32, 35 | syl311anc 1381 | . 2 β’ (π β (βπ₯ β π (πβ(πΉβπ₯)) β€ (π΄ Β· (πΏβπ₯)) β (πβπΉ) β€ π΄)) |
37 | 31, 36 | mpd 15 | 1 β’ (π β (πβπΉ) β€ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 βwral 3055 class class class wbr 5141 βcfv 6537 (class class class)co 7405 βcr 11111 0cc0 11112 Β· cmul 11117 β€ cle 11253 Basecbs 17153 0gc0g 17394 GrpHom cghm 19138 normcnm 24440 NrmGrpcngp 24441 normOp cnmo 24577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ico 13336 df-0g 17396 df-topgen 17398 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-ghm 19139 df-psmet 21232 df-xmet 21233 df-bl 21235 df-mopn 21236 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-xms 24181 df-ms 24182 df-nm 24446 df-ngp 24447 df-nmo 24580 |
This theorem is referenced by: nmo0 24607 nmoco 24609 nmotri 24611 nmoid 24614 nmoleub2lem 24996 |
Copyright terms: Public domain | W3C validator |