MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmolb2d Structured version   Visualization version   GIF version

Theorem nmolb2d 24760
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
nmolb2d.z 0 = (0g𝑆)
nmolb2d.1 (𝜑𝑆 ∈ NrmGrp)
nmolb2d.2 (𝜑𝑇 ∈ NrmGrp)
nmolb2d.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmolb2d.4 (𝜑𝐴 ∈ ℝ)
nmolb2d.5 (𝜑 → 0 ≤ 𝐴)
nmolb2d.6 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
Assertion
Ref Expression
nmolb2d (𝜑 → (𝑁𝐹) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmolb2d
StepHypRef Expression
1 2fveq3 6925 . . . . 5 (𝑥 = 0 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹0 )))
2 fveq2 6920 . . . . . 6 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
32oveq2d 7464 . . . . 5 (𝑥 = 0 → (𝐴 · (𝐿𝑥)) = (𝐴 · (𝐿0 )))
41, 3breq12d 5179 . . . 4 (𝑥 = 0 → ((𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) ↔ (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 ))))
5 nmolb2d.6 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
65anassrs 467 . . . 4 (((𝜑𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
7 0le0 12394 . . . . . . 7 0 ≤ 0
8 nmolb2d.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
98recnd 11318 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
109mul01d 11489 . . . . . . 7 (𝜑 → (𝐴 · 0) = 0)
117, 10breqtrrid 5204 . . . . . 6 (𝜑 → 0 ≤ (𝐴 · 0))
12 nmolb2d.3 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
13 nmolb2d.z . . . . . . . . . 10 0 = (0g𝑆)
14 eqid 2740 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 19262 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
1612, 15syl 17 . . . . . . . 8 (𝜑 → (𝐹0 ) = (0g𝑇))
1716fveq2d 6924 . . . . . . 7 (𝜑 → (𝑀‘(𝐹0 )) = (𝑀‘(0g𝑇)))
18 nmolb2d.2 . . . . . . . 8 (𝜑𝑇 ∈ NrmGrp)
19 nmofval.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
2019, 14nm0 24663 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 20syl 17 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2780 . . . . . 6 (𝜑 → (𝑀‘(𝐹0 )) = 0)
23 nmolb2d.1 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
24 nmofval.3 . . . . . . . . 9 𝐿 = (norm‘𝑆)
2524, 13nm0 24663 . . . . . . . 8 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
2623, 25syl 17 . . . . . . 7 (𝜑 → (𝐿0 ) = 0)
2726oveq2d 7464 . . . . . 6 (𝜑 → (𝐴 · (𝐿0 )) = (𝐴 · 0))
2811, 22, 273brtr4d 5198 . . . . 5 (𝜑 → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
2928adantr 480 . . . 4 ((𝜑𝑥𝑉) → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
304, 6, 29pm2.61ne 3033 . . 3 ((𝜑𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
3130ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
32 nmolb2d.5 . . 3 (𝜑 → 0 ≤ 𝐴)
33 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
34 nmofval.2 . . . 4 𝑉 = (Base‘𝑆)
3533, 34, 24, 19nmolb 24759 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3623, 18, 12, 8, 32, 35syl311anc 1384 . 2 (𝜑 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3731, 36mpd 15 1 (𝜑 → (𝑁𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  cle 11325  Basecbs 17258  0gc0g 17499   GrpHom cghm 19252  normcnm 24610  NrmGrpcngp 24611   normOp cnmo 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ghm 19253  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-nmo 24750
This theorem is referenced by:  nmo0  24777  nmoco  24779  nmotri  24781  nmoid  24784  nmoleub2lem  25166
  Copyright terms: Public domain W3C validator