MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmolb2d Structured version   Visualization version   GIF version

Theorem nmolb2d 23882
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
nmolb2d.z 0 = (0g𝑆)
nmolb2d.1 (𝜑𝑆 ∈ NrmGrp)
nmolb2d.2 (𝜑𝑇 ∈ NrmGrp)
nmolb2d.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmolb2d.4 (𝜑𝐴 ∈ ℝ)
nmolb2d.5 (𝜑 → 0 ≤ 𝐴)
nmolb2d.6 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
Assertion
Ref Expression
nmolb2d (𝜑 → (𝑁𝐹) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmolb2d
StepHypRef Expression
1 2fveq3 6779 . . . . 5 (𝑥 = 0 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹0 )))
2 fveq2 6774 . . . . . 6 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
32oveq2d 7291 . . . . 5 (𝑥 = 0 → (𝐴 · (𝐿𝑥)) = (𝐴 · (𝐿0 )))
41, 3breq12d 5087 . . . 4 (𝑥 = 0 → ((𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) ↔ (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 ))))
5 nmolb2d.6 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
65anassrs 468 . . . 4 (((𝜑𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
7 0le0 12074 . . . . . . 7 0 ≤ 0
8 nmolb2d.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
98recnd 11003 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
109mul01d 11174 . . . . . . 7 (𝜑 → (𝐴 · 0) = 0)
117, 10breqtrrid 5112 . . . . . 6 (𝜑 → 0 ≤ (𝐴 · 0))
12 nmolb2d.3 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
13 nmolb2d.z . . . . . . . . . 10 0 = (0g𝑆)
14 eqid 2738 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 18840 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
1612, 15syl 17 . . . . . . . 8 (𝜑 → (𝐹0 ) = (0g𝑇))
1716fveq2d 6778 . . . . . . 7 (𝜑 → (𝑀‘(𝐹0 )) = (𝑀‘(0g𝑇)))
18 nmolb2d.2 . . . . . . . 8 (𝜑𝑇 ∈ NrmGrp)
19 nmofval.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
2019, 14nm0 23785 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 20syl 17 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2778 . . . . . 6 (𝜑 → (𝑀‘(𝐹0 )) = 0)
23 nmolb2d.1 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
24 nmofval.3 . . . . . . . . 9 𝐿 = (norm‘𝑆)
2524, 13nm0 23785 . . . . . . . 8 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
2623, 25syl 17 . . . . . . 7 (𝜑 → (𝐿0 ) = 0)
2726oveq2d 7291 . . . . . 6 (𝜑 → (𝐴 · (𝐿0 )) = (𝐴 · 0))
2811, 22, 273brtr4d 5106 . . . . 5 (𝜑 → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
2928adantr 481 . . . 4 ((𝜑𝑥𝑉) → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
304, 6, 29pm2.61ne 3030 . . 3 ((𝜑𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
3130ralrimiva 3103 . 2 (𝜑 → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
32 nmolb2d.5 . . 3 (𝜑 → 0 ≤ 𝐴)
33 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
34 nmofval.2 . . . 4 𝑉 = (Base‘𝑆)
3533, 34, 24, 19nmolb 23881 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3623, 18, 12, 8, 32, 35syl311anc 1383 . 2 (𝜑 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3731, 36mpd 15 1 (𝜑 → (𝑁𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876  cle 11010  Basecbs 16912  0gc0g 17150   GrpHom cghm 18831  normcnm 23732  NrmGrpcngp 23733   normOp cnmo 23869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ghm 18832  df-psmet 20589  df-xmet 20590  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nmo 23872
This theorem is referenced by:  nmo0  23899  nmoco  23901  nmotri  23903  nmoid  23906  nmoleub2lem  24277
  Copyright terms: Public domain W3C validator