Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmolb2d | Structured version Visualization version GIF version |
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
nmofval.2 | ⊢ 𝑉 = (Base‘𝑆) |
nmofval.3 | ⊢ 𝐿 = (norm‘𝑆) |
nmofval.4 | ⊢ 𝑀 = (norm‘𝑇) |
nmolb2d.z | ⊢ 0 = (0g‘𝑆) |
nmolb2d.1 | ⊢ (𝜑 → 𝑆 ∈ NrmGrp) |
nmolb2d.2 | ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
nmolb2d.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
nmolb2d.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
nmolb2d.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
nmolb2d.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
Ref | Expression |
---|---|
nmolb2d | ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6761 | . . . . 5 ⊢ (𝑥 = 0 → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘ 0 ))) | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 0 → (𝐿‘𝑥) = (𝐿‘ 0 )) | |
3 | 2 | oveq2d 7271 | . . . . 5 ⊢ (𝑥 = 0 → (𝐴 · (𝐿‘𝑥)) = (𝐴 · (𝐿‘ 0 ))) |
4 | 1, 3 | breq12d 5083 | . . . 4 ⊢ (𝑥 = 0 → ((𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 )))) |
5 | nmolb2d.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) | |
6 | 5 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ 𝑥 ≠ 0 ) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
7 | 0le0 12004 | . . . . . . 7 ⊢ 0 ≤ 0 | |
8 | nmolb2d.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | 8 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | 9 | mul01d 11104 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 0) = 0) |
11 | 7, 10 | breqtrrid 5108 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (𝐴 · 0)) |
12 | nmolb2d.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
13 | nmolb2d.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑆) | |
14 | eqid 2738 | . . . . . . . . . 10 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
15 | 13, 14 | ghmid 18755 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘ 0 ) = (0g‘𝑇)) |
16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘ 0 ) = (0g‘𝑇)) |
17 | 16 | fveq2d 6760 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = (𝑀‘(0g‘𝑇))) |
18 | nmolb2d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ NrmGrp) | |
19 | nmofval.4 | . . . . . . . . 9 ⊢ 𝑀 = (norm‘𝑇) | |
20 | 19, 14 | nm0 23691 | . . . . . . . 8 ⊢ (𝑇 ∈ NrmGrp → (𝑀‘(0g‘𝑇)) = 0) |
21 | 18, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(0g‘𝑇)) = 0) |
22 | 17, 21 | eqtrd 2778 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = 0) |
23 | nmolb2d.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ NrmGrp) | |
24 | nmofval.3 | . . . . . . . . 9 ⊢ 𝐿 = (norm‘𝑆) | |
25 | 24, 13 | nm0 23691 | . . . . . . . 8 ⊢ (𝑆 ∈ NrmGrp → (𝐿‘ 0 ) = 0) |
26 | 23, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘ 0 ) = 0) |
27 | 26 | oveq2d 7271 | . . . . . 6 ⊢ (𝜑 → (𝐴 · (𝐿‘ 0 )) = (𝐴 · 0)) |
28 | 11, 22, 27 | 3brtr4d 5102 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
30 | 4, 6, 29 | pm2.61ne 3029 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
31 | 30 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
32 | nmolb2d.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
33 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
34 | nmofval.2 | . . . 4 ⊢ 𝑉 = (Base‘𝑆) | |
35 | 33, 34, 24, 19 | nmolb 23787 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
36 | 23, 18, 12, 8, 32, 35 | syl311anc 1382 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
37 | 31, 36 | mpd 15 | 1 ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 · cmul 10807 ≤ cle 10941 Basecbs 16840 0gc0g 17067 GrpHom cghm 18746 normcnm 23638 NrmGrpcngp 23639 normOp cnmo 23775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-0g 17069 df-topgen 17071 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ghm 18747 df-psmet 20502 df-xmet 20503 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 df-nmo 23778 |
This theorem is referenced by: nmo0 23805 nmoco 23807 nmotri 23809 nmoid 23812 nmoleub2lem 24183 |
Copyright terms: Public domain | W3C validator |