Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmolb2d | Structured version Visualization version GIF version |
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
nmofval.2 | ⊢ 𝑉 = (Base‘𝑆) |
nmofval.3 | ⊢ 𝐿 = (norm‘𝑆) |
nmofval.4 | ⊢ 𝑀 = (norm‘𝑇) |
nmolb2d.z | ⊢ 0 = (0g‘𝑆) |
nmolb2d.1 | ⊢ (𝜑 → 𝑆 ∈ NrmGrp) |
nmolb2d.2 | ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
nmolb2d.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
nmolb2d.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
nmolb2d.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
nmolb2d.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
Ref | Expression |
---|---|
nmolb2d | ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6663 | . . . . 5 ⊢ (𝑥 = 0 → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘ 0 ))) | |
2 | fveq2 6658 | . . . . . 6 ⊢ (𝑥 = 0 → (𝐿‘𝑥) = (𝐿‘ 0 )) | |
3 | 2 | oveq2d 7166 | . . . . 5 ⊢ (𝑥 = 0 → (𝐴 · (𝐿‘𝑥)) = (𝐴 · (𝐿‘ 0 ))) |
4 | 1, 3 | breq12d 5045 | . . . 4 ⊢ (𝑥 = 0 → ((𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 )))) |
5 | nmolb2d.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) | |
6 | 5 | anassrs 471 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ 𝑥 ≠ 0 ) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
7 | 0le0 11775 | . . . . . . 7 ⊢ 0 ≤ 0 | |
8 | nmolb2d.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | 8 | recnd 10707 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | 9 | mul01d 10877 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 0) = 0) |
11 | 7, 10 | breqtrrid 5070 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (𝐴 · 0)) |
12 | nmolb2d.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
13 | nmolb2d.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑆) | |
14 | eqid 2758 | . . . . . . . . . 10 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
15 | 13, 14 | ghmid 18431 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘ 0 ) = (0g‘𝑇)) |
16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘ 0 ) = (0g‘𝑇)) |
17 | 16 | fveq2d 6662 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = (𝑀‘(0g‘𝑇))) |
18 | nmolb2d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ NrmGrp) | |
19 | nmofval.4 | . . . . . . . . 9 ⊢ 𝑀 = (norm‘𝑇) | |
20 | 19, 14 | nm0 23331 | . . . . . . . 8 ⊢ (𝑇 ∈ NrmGrp → (𝑀‘(0g‘𝑇)) = 0) |
21 | 18, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(0g‘𝑇)) = 0) |
22 | 17, 21 | eqtrd 2793 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = 0) |
23 | nmolb2d.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ NrmGrp) | |
24 | nmofval.3 | . . . . . . . . 9 ⊢ 𝐿 = (norm‘𝑆) | |
25 | 24, 13 | nm0 23331 | . . . . . . . 8 ⊢ (𝑆 ∈ NrmGrp → (𝐿‘ 0 ) = 0) |
26 | 23, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘ 0 ) = 0) |
27 | 26 | oveq2d 7166 | . . . . . 6 ⊢ (𝜑 → (𝐴 · (𝐿‘ 0 )) = (𝐴 · 0)) |
28 | 11, 22, 27 | 3brtr4d 5064 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
29 | 28 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
30 | 4, 6, 29 | pm2.61ne 3036 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
31 | 30 | ralrimiva 3113 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
32 | nmolb2d.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
33 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
34 | nmofval.2 | . . . 4 ⊢ 𝑉 = (Base‘𝑆) | |
35 | 33, 34, 24, 19 | nmolb 23419 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
36 | 23, 18, 12, 8, 32, 35 | syl311anc 1381 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
37 | 31, 36 | mpd 15 | 1 ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 ℝcr 10574 0cc0 10575 · cmul 10580 ≤ cle 10714 Basecbs 16541 0gc0g 16771 GrpHom cghm 18422 normcnm 23278 NrmGrpcngp 23279 normOp cnmo 23407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ico 12785 df-0g 16773 df-topgen 16775 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-ghm 18423 df-psmet 20158 df-xmet 20159 df-bl 20161 df-mopn 20162 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-xms 23022 df-ms 23023 df-nm 23284 df-ngp 23285 df-nmo 23410 |
This theorem is referenced by: nmo0 23437 nmoco 23439 nmotri 23441 nmoid 23444 nmoleub2lem 23815 |
Copyright terms: Public domain | W3C validator |