MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmolb2d Structured version   Visualization version   GIF version

Theorem nmolb2d 24613
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
nmolb2d.z 0 = (0g𝑆)
nmolb2d.1 (𝜑𝑆 ∈ NrmGrp)
nmolb2d.2 (𝜑𝑇 ∈ NrmGrp)
nmolb2d.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmolb2d.4 (𝜑𝐴 ∈ ℝ)
nmolb2d.5 (𝜑 → 0 ≤ 𝐴)
nmolb2d.6 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
Assertion
Ref Expression
nmolb2d (𝜑 → (𝑁𝐹) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmolb2d
StepHypRef Expression
1 2fveq3 6866 . . . . 5 (𝑥 = 0 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹0 )))
2 fveq2 6861 . . . . . 6 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
32oveq2d 7406 . . . . 5 (𝑥 = 0 → (𝐴 · (𝐿𝑥)) = (𝐴 · (𝐿0 )))
41, 3breq12d 5123 . . . 4 (𝑥 = 0 → ((𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) ↔ (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 ))))
5 nmolb2d.6 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
65anassrs 467 . . . 4 (((𝜑𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
7 0le0 12294 . . . . . . 7 0 ≤ 0
8 nmolb2d.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
98recnd 11209 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
109mul01d 11380 . . . . . . 7 (𝜑 → (𝐴 · 0) = 0)
117, 10breqtrrid 5148 . . . . . 6 (𝜑 → 0 ≤ (𝐴 · 0))
12 nmolb2d.3 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
13 nmolb2d.z . . . . . . . . . 10 0 = (0g𝑆)
14 eqid 2730 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 19161 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
1612, 15syl 17 . . . . . . . 8 (𝜑 → (𝐹0 ) = (0g𝑇))
1716fveq2d 6865 . . . . . . 7 (𝜑 → (𝑀‘(𝐹0 )) = (𝑀‘(0g𝑇)))
18 nmolb2d.2 . . . . . . . 8 (𝜑𝑇 ∈ NrmGrp)
19 nmofval.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
2019, 14nm0 24524 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 20syl 17 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2765 . . . . . 6 (𝜑 → (𝑀‘(𝐹0 )) = 0)
23 nmolb2d.1 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
24 nmofval.3 . . . . . . . . 9 𝐿 = (norm‘𝑆)
2524, 13nm0 24524 . . . . . . . 8 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
2623, 25syl 17 . . . . . . 7 (𝜑 → (𝐿0 ) = 0)
2726oveq2d 7406 . . . . . 6 (𝜑 → (𝐴 · (𝐿0 )) = (𝐴 · 0))
2811, 22, 273brtr4d 5142 . . . . 5 (𝜑 → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
2928adantr 480 . . . 4 ((𝜑𝑥𝑉) → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
304, 6, 29pm2.61ne 3011 . . 3 ((𝜑𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
3130ralrimiva 3126 . 2 (𝜑 → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
32 nmolb2d.5 . . 3 (𝜑 → 0 ≤ 𝐴)
33 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
34 nmofval.2 . . . 4 𝑉 = (Base‘𝑆)
3533, 34, 24, 19nmolb 24612 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3623, 18, 12, 8, 32, 35syl311anc 1386 . 2 (𝜑 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3731, 36mpd 15 1 (𝜑 → (𝑁𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075   · cmul 11080  cle 11216  Basecbs 17186  0gc0g 17409   GrpHom cghm 19151  normcnm 24471  NrmGrpcngp 24472   normOp cnmo 24600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-ghm 19152  df-psmet 21263  df-xmet 21264  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nmo 24603
This theorem is referenced by:  nmo0  24630  nmoco  24632  nmotri  24634  nmoid  24637  nmoleub2lem  25021
  Copyright terms: Public domain W3C validator