| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmolb2d | Structured version Visualization version GIF version | ||
| Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmofval.2 | ⊢ 𝑉 = (Base‘𝑆) |
| nmofval.3 | ⊢ 𝐿 = (norm‘𝑆) |
| nmofval.4 | ⊢ 𝑀 = (norm‘𝑇) |
| nmolb2d.z | ⊢ 0 = (0g‘𝑆) |
| nmolb2d.1 | ⊢ (𝜑 → 𝑆 ∈ NrmGrp) |
| nmolb2d.2 | ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
| nmolb2d.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| nmolb2d.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| nmolb2d.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| nmolb2d.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| Ref | Expression |
|---|---|
| nmolb2d | ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6845 | . . . . 5 ⊢ (𝑥 = 0 → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘ 0 ))) | |
| 2 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 0 → (𝐿‘𝑥) = (𝐿‘ 0 )) | |
| 3 | 2 | oveq2d 7385 | . . . . 5 ⊢ (𝑥 = 0 → (𝐴 · (𝐿‘𝑥)) = (𝐴 · (𝐿‘ 0 ))) |
| 4 | 1, 3 | breq12d 5115 | . . . 4 ⊢ (𝑥 = 0 → ((𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 )))) |
| 5 | nmolb2d.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) | |
| 6 | 5 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ 𝑥 ≠ 0 ) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 7 | 0le0 12263 | . . . . . . 7 ⊢ 0 ≤ 0 | |
| 8 | nmolb2d.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 8 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | 9 | mul01d 11349 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 0) = 0) |
| 11 | 7, 10 | breqtrrid 5140 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (𝐴 · 0)) |
| 12 | nmolb2d.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 13 | nmolb2d.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑆) | |
| 14 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 15 | 13, 14 | ghmid 19130 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘ 0 ) = (0g‘𝑇)) |
| 16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘ 0 ) = (0g‘𝑇)) |
| 17 | 16 | fveq2d 6844 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = (𝑀‘(0g‘𝑇))) |
| 18 | nmolb2d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ NrmGrp) | |
| 19 | nmofval.4 | . . . . . . . . 9 ⊢ 𝑀 = (norm‘𝑇) | |
| 20 | 19, 14 | nm0 24493 | . . . . . . . 8 ⊢ (𝑇 ∈ NrmGrp → (𝑀‘(0g‘𝑇)) = 0) |
| 21 | 18, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(0g‘𝑇)) = 0) |
| 22 | 17, 21 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = 0) |
| 23 | nmolb2d.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ NrmGrp) | |
| 24 | nmofval.3 | . . . . . . . . 9 ⊢ 𝐿 = (norm‘𝑆) | |
| 25 | 24, 13 | nm0 24493 | . . . . . . . 8 ⊢ (𝑆 ∈ NrmGrp → (𝐿‘ 0 ) = 0) |
| 26 | 23, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘ 0 ) = 0) |
| 27 | 26 | oveq2d 7385 | . . . . . 6 ⊢ (𝜑 → (𝐴 · (𝐿‘ 0 )) = (𝐴 · 0)) |
| 28 | 11, 22, 27 | 3brtr4d 5134 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
| 30 | 4, 6, 29 | pm2.61ne 3010 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 31 | 30 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 32 | nmolb2d.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 33 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 34 | nmofval.2 | . . . 4 ⊢ 𝑉 = (Base‘𝑆) | |
| 35 | 33, 34, 24, 19 | nmolb 24581 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| 36 | 23, 18, 12, 8, 32, 35 | syl311anc 1386 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| 37 | 31, 36 | mpd 15 | 1 ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 · cmul 11049 ≤ cle 11185 Basecbs 17155 0gc0g 17378 GrpHom cghm 19120 normcnm 24440 NrmGrpcngp 24441 normOp cnmo 24569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-0g 17380 df-topgen 17382 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-ghm 19121 df-psmet 21232 df-xmet 21233 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-xms 24184 df-ms 24185 df-nm 24446 df-ngp 24447 df-nmo 24572 |
| This theorem is referenced by: nmo0 24599 nmoco 24601 nmotri 24603 nmoid 24606 nmoleub2lem 24990 |
| Copyright terms: Public domain | W3C validator |