MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmolb2d Structured version   Visualization version   GIF version

Theorem nmolb2d 23788
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
nmolb2d.z 0 = (0g𝑆)
nmolb2d.1 (𝜑𝑆 ∈ NrmGrp)
nmolb2d.2 (𝜑𝑇 ∈ NrmGrp)
nmolb2d.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmolb2d.4 (𝜑𝐴 ∈ ℝ)
nmolb2d.5 (𝜑 → 0 ≤ 𝐴)
nmolb2d.6 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
Assertion
Ref Expression
nmolb2d (𝜑 → (𝑁𝐹) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmolb2d
StepHypRef Expression
1 2fveq3 6761 . . . . 5 (𝑥 = 0 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹0 )))
2 fveq2 6756 . . . . . 6 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
32oveq2d 7271 . . . . 5 (𝑥 = 0 → (𝐴 · (𝐿𝑥)) = (𝐴 · (𝐿0 )))
41, 3breq12d 5083 . . . 4 (𝑥 = 0 → ((𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) ↔ (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 ))))
5 nmolb2d.6 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
65anassrs 467 . . . 4 (((𝜑𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
7 0le0 12004 . . . . . . 7 0 ≤ 0
8 nmolb2d.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
98recnd 10934 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
109mul01d 11104 . . . . . . 7 (𝜑 → (𝐴 · 0) = 0)
117, 10breqtrrid 5108 . . . . . 6 (𝜑 → 0 ≤ (𝐴 · 0))
12 nmolb2d.3 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
13 nmolb2d.z . . . . . . . . . 10 0 = (0g𝑆)
14 eqid 2738 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 18755 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
1612, 15syl 17 . . . . . . . 8 (𝜑 → (𝐹0 ) = (0g𝑇))
1716fveq2d 6760 . . . . . . 7 (𝜑 → (𝑀‘(𝐹0 )) = (𝑀‘(0g𝑇)))
18 nmolb2d.2 . . . . . . . 8 (𝜑𝑇 ∈ NrmGrp)
19 nmofval.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
2019, 14nm0 23691 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 20syl 17 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2778 . . . . . 6 (𝜑 → (𝑀‘(𝐹0 )) = 0)
23 nmolb2d.1 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
24 nmofval.3 . . . . . . . . 9 𝐿 = (norm‘𝑆)
2524, 13nm0 23691 . . . . . . . 8 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
2623, 25syl 17 . . . . . . 7 (𝜑 → (𝐿0 ) = 0)
2726oveq2d 7271 . . . . . 6 (𝜑 → (𝐴 · (𝐿0 )) = (𝐴 · 0))
2811, 22, 273brtr4d 5102 . . . . 5 (𝜑 → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
2928adantr 480 . . . 4 ((𝜑𝑥𝑉) → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
304, 6, 29pm2.61ne 3029 . . 3 ((𝜑𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
3130ralrimiva 3107 . 2 (𝜑 → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
32 nmolb2d.5 . . 3 (𝜑 → 0 ≤ 𝐴)
33 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
34 nmofval.2 . . . 4 𝑉 = (Base‘𝑆)
3533, 34, 24, 19nmolb 23787 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3623, 18, 12, 8, 32, 35syl311anc 1382 . 2 (𝜑 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3731, 36mpd 15 1 (𝜑 → (𝑁𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807  cle 10941  Basecbs 16840  0gc0g 17067   GrpHom cghm 18746  normcnm 23638  NrmGrpcngp 23639   normOp cnmo 23775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-psmet 20502  df-xmet 20503  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nmo 23778
This theorem is referenced by:  nmo0  23805  nmoco  23807  nmotri  23809  nmoid  23812  nmoleub2lem  24183
  Copyright terms: Public domain W3C validator