MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmolb2d Structured version   Visualization version   GIF version

Theorem nmolb2d 24582
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
nmolb2d.z 0 = (0g𝑆)
nmolb2d.1 (𝜑𝑆 ∈ NrmGrp)
nmolb2d.2 (𝜑𝑇 ∈ NrmGrp)
nmolb2d.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmolb2d.4 (𝜑𝐴 ∈ ℝ)
nmolb2d.5 (𝜑 → 0 ≤ 𝐴)
nmolb2d.6 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
Assertion
Ref Expression
nmolb2d (𝜑 → (𝑁𝐹) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmolb2d
StepHypRef Expression
1 2fveq3 6845 . . . . 5 (𝑥 = 0 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹0 )))
2 fveq2 6840 . . . . . 6 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
32oveq2d 7385 . . . . 5 (𝑥 = 0 → (𝐴 · (𝐿𝑥)) = (𝐴 · (𝐿0 )))
41, 3breq12d 5115 . . . 4 (𝑥 = 0 → ((𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) ↔ (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 ))))
5 nmolb2d.6 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
65anassrs 467 . . . 4 (((𝜑𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
7 0le0 12263 . . . . . . 7 0 ≤ 0
8 nmolb2d.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
98recnd 11178 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
109mul01d 11349 . . . . . . 7 (𝜑 → (𝐴 · 0) = 0)
117, 10breqtrrid 5140 . . . . . 6 (𝜑 → 0 ≤ (𝐴 · 0))
12 nmolb2d.3 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
13 nmolb2d.z . . . . . . . . . 10 0 = (0g𝑆)
14 eqid 2729 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 19130 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
1612, 15syl 17 . . . . . . . 8 (𝜑 → (𝐹0 ) = (0g𝑇))
1716fveq2d 6844 . . . . . . 7 (𝜑 → (𝑀‘(𝐹0 )) = (𝑀‘(0g𝑇)))
18 nmolb2d.2 . . . . . . . 8 (𝜑𝑇 ∈ NrmGrp)
19 nmofval.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
2019, 14nm0 24493 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 20syl 17 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2764 . . . . . 6 (𝜑 → (𝑀‘(𝐹0 )) = 0)
23 nmolb2d.1 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
24 nmofval.3 . . . . . . . . 9 𝐿 = (norm‘𝑆)
2524, 13nm0 24493 . . . . . . . 8 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
2623, 25syl 17 . . . . . . 7 (𝜑 → (𝐿0 ) = 0)
2726oveq2d 7385 . . . . . 6 (𝜑 → (𝐴 · (𝐿0 )) = (𝐴 · 0))
2811, 22, 273brtr4d 5134 . . . . 5 (𝜑 → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
2928adantr 480 . . . 4 ((𝜑𝑥𝑉) → (𝑀‘(𝐹0 )) ≤ (𝐴 · (𝐿0 )))
304, 6, 29pm2.61ne 3010 . . 3 ((𝜑𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
3130ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
32 nmolb2d.5 . . 3 (𝜑 → 0 ≤ 𝐴)
33 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
34 nmofval.2 . . . 4 𝑉 = (Base‘𝑆)
3533, 34, 24, 19nmolb 24581 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3623, 18, 12, 8, 32, 35syl311anc 1386 . 2 (𝜑 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
3731, 36mpd 15 1 (𝜑 → (𝑁𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   · cmul 11049  cle 11185  Basecbs 17155  0gc0g 17378   GrpHom cghm 19120  normcnm 24440  NrmGrpcngp 24441   normOp cnmo 24569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-0g 17380  df-topgen 17382  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-ghm 19121  df-psmet 21232  df-xmet 21233  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-xms 24184  df-ms 24185  df-nm 24446  df-ngp 24447  df-nmo 24572
This theorem is referenced by:  nmo0  24599  nmoco  24601  nmotri  24603  nmoid  24606  nmoleub2lem  24990
  Copyright terms: Public domain W3C validator