| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmolb2d | Structured version Visualization version GIF version | ||
| Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmofval.2 | ⊢ 𝑉 = (Base‘𝑆) |
| nmofval.3 | ⊢ 𝐿 = (norm‘𝑆) |
| nmofval.4 | ⊢ 𝑀 = (norm‘𝑇) |
| nmolb2d.z | ⊢ 0 = (0g‘𝑆) |
| nmolb2d.1 | ⊢ (𝜑 → 𝑆 ∈ NrmGrp) |
| nmolb2d.2 | ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
| nmolb2d.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| nmolb2d.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| nmolb2d.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| nmolb2d.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| Ref | Expression |
|---|---|
| nmolb2d | ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6891 | . . . . 5 ⊢ (𝑥 = 0 → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘ 0 ))) | |
| 2 | fveq2 6886 | . . . . . 6 ⊢ (𝑥 = 0 → (𝐿‘𝑥) = (𝐿‘ 0 )) | |
| 3 | 2 | oveq2d 7429 | . . . . 5 ⊢ (𝑥 = 0 → (𝐴 · (𝐿‘𝑥)) = (𝐴 · (𝐿‘ 0 ))) |
| 4 | 1, 3 | breq12d 5136 | . . . 4 ⊢ (𝑥 = 0 → ((𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 )))) |
| 5 | nmolb2d.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) | |
| 6 | 5 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ 𝑥 ≠ 0 ) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 7 | 0le0 12349 | . . . . . . 7 ⊢ 0 ≤ 0 | |
| 8 | nmolb2d.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 8 | recnd 11271 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | 9 | mul01d 11442 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 0) = 0) |
| 11 | 7, 10 | breqtrrid 5161 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (𝐴 · 0)) |
| 12 | nmolb2d.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 13 | nmolb2d.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑆) | |
| 14 | eqid 2734 | . . . . . . . . . 10 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 15 | 13, 14 | ghmid 19209 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘ 0 ) = (0g‘𝑇)) |
| 16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘ 0 ) = (0g‘𝑇)) |
| 17 | 16 | fveq2d 6890 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = (𝑀‘(0g‘𝑇))) |
| 18 | nmolb2d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ NrmGrp) | |
| 19 | nmofval.4 | . . . . . . . . 9 ⊢ 𝑀 = (norm‘𝑇) | |
| 20 | 19, 14 | nm0 24586 | . . . . . . . 8 ⊢ (𝑇 ∈ NrmGrp → (𝑀‘(0g‘𝑇)) = 0) |
| 21 | 18, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(0g‘𝑇)) = 0) |
| 22 | 17, 21 | eqtrd 2769 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = 0) |
| 23 | nmolb2d.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ NrmGrp) | |
| 24 | nmofval.3 | . . . . . . . . 9 ⊢ 𝐿 = (norm‘𝑆) | |
| 25 | 24, 13 | nm0 24586 | . . . . . . . 8 ⊢ (𝑆 ∈ NrmGrp → (𝐿‘ 0 ) = 0) |
| 26 | 23, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘ 0 ) = 0) |
| 27 | 26 | oveq2d 7429 | . . . . . 6 ⊢ (𝜑 → (𝐴 · (𝐿‘ 0 )) = (𝐴 · 0)) |
| 28 | 11, 22, 27 | 3brtr4d 5155 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
| 30 | 4, 6, 29 | pm2.61ne 3016 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 31 | 30 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 32 | nmolb2d.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 33 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 34 | nmofval.2 | . . . 4 ⊢ 𝑉 = (Base‘𝑆) | |
| 35 | 33, 34, 24, 19 | nmolb 24674 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| 36 | 23, 18, 12, 8, 32, 35 | syl311anc 1385 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| 37 | 31, 36 | mpd 15 | 1 ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 · cmul 11142 ≤ cle 11278 Basecbs 17229 0gc0g 17455 GrpHom cghm 19199 normcnm 24533 NrmGrpcngp 24534 normOp cnmo 24662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ico 13375 df-0g 17457 df-topgen 17459 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-ghm 19200 df-psmet 21318 df-xmet 21319 df-bl 21321 df-mopn 21322 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-xms 24275 df-ms 24276 df-nm 24539 df-ngp 24540 df-nmo 24665 |
| This theorem is referenced by: nmo0 24692 nmoco 24694 nmotri 24696 nmoid 24699 nmoleub2lem 25083 |
| Copyright terms: Public domain | W3C validator |