| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmolb2d | Structured version Visualization version GIF version | ||
| Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmofval.2 | ⊢ 𝑉 = (Base‘𝑆) |
| nmofval.3 | ⊢ 𝐿 = (norm‘𝑆) |
| nmofval.4 | ⊢ 𝑀 = (norm‘𝑇) |
| nmolb2d.z | ⊢ 0 = (0g‘𝑆) |
| nmolb2d.1 | ⊢ (𝜑 → 𝑆 ∈ NrmGrp) |
| nmolb2d.2 | ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
| nmolb2d.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| nmolb2d.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| nmolb2d.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| nmolb2d.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| Ref | Expression |
|---|---|
| nmolb2d | ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6866 | . . . . 5 ⊢ (𝑥 = 0 → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘ 0 ))) | |
| 2 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 0 → (𝐿‘𝑥) = (𝐿‘ 0 )) | |
| 3 | 2 | oveq2d 7406 | . . . . 5 ⊢ (𝑥 = 0 → (𝐴 · (𝐿‘𝑥)) = (𝐴 · (𝐿‘ 0 ))) |
| 4 | 1, 3 | breq12d 5123 | . . . 4 ⊢ (𝑥 = 0 → ((𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 )))) |
| 5 | nmolb2d.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) | |
| 6 | 5 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ 𝑥 ≠ 0 ) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 7 | 0le0 12294 | . . . . . . 7 ⊢ 0 ≤ 0 | |
| 8 | nmolb2d.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 8 | recnd 11209 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | 9 | mul01d 11380 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 0) = 0) |
| 11 | 7, 10 | breqtrrid 5148 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (𝐴 · 0)) |
| 12 | nmolb2d.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 13 | nmolb2d.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑆) | |
| 14 | eqid 2730 | . . . . . . . . . 10 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 15 | 13, 14 | ghmid 19161 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘ 0 ) = (0g‘𝑇)) |
| 16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹‘ 0 ) = (0g‘𝑇)) |
| 17 | 16 | fveq2d 6865 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = (𝑀‘(0g‘𝑇))) |
| 18 | nmolb2d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ NrmGrp) | |
| 19 | nmofval.4 | . . . . . . . . 9 ⊢ 𝑀 = (norm‘𝑇) | |
| 20 | 19, 14 | nm0 24524 | . . . . . . . 8 ⊢ (𝑇 ∈ NrmGrp → (𝑀‘(0g‘𝑇)) = 0) |
| 21 | 18, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(0g‘𝑇)) = 0) |
| 22 | 17, 21 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) = 0) |
| 23 | nmolb2d.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ NrmGrp) | |
| 24 | nmofval.3 | . . . . . . . . 9 ⊢ 𝐿 = (norm‘𝑆) | |
| 25 | 24, 13 | nm0 24524 | . . . . . . . 8 ⊢ (𝑆 ∈ NrmGrp → (𝐿‘ 0 ) = 0) |
| 26 | 23, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘ 0 ) = 0) |
| 27 | 26 | oveq2d 7406 | . . . . . 6 ⊢ (𝜑 → (𝐴 · (𝐿‘ 0 )) = (𝐴 · 0)) |
| 28 | 11, 22, 27 | 3brtr4d 5142 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘ 0 )) ≤ (𝐴 · (𝐿‘ 0 ))) |
| 30 | 4, 6, 29 | pm2.61ne 3011 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 31 | 30 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) |
| 32 | nmolb2d.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 33 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 34 | nmofval.2 | . . . 4 ⊢ 𝑉 = (Base‘𝑆) | |
| 35 | 33, 34, 24, 19 | nmolb 24612 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| 36 | 23, 18, 12, 8, 32, 35 | syl311anc 1386 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| 37 | 31, 36 | mpd 15 | 1 ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 · cmul 11080 ≤ cle 11216 Basecbs 17186 0gc0g 17409 GrpHom cghm 19151 normcnm 24471 NrmGrpcngp 24472 normOp cnmo 24600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ico 13319 df-0g 17411 df-topgen 17413 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ghm 19152 df-psmet 21263 df-xmet 21264 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-xms 24215 df-ms 24216 df-nm 24477 df-ngp 24478 df-nmo 24603 |
| This theorem is referenced by: nmo0 24630 nmoco 24632 nmotri 24634 nmoid 24637 nmoleub2lem 25021 |
| Copyright terms: Public domain | W3C validator |