MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub Structured version   Visualization version   GIF version

Theorem nmoleub 22754
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
nmoleub.1 (𝜑𝑆 ∈ NrmGrp)
nmoleub.2 (𝜑𝑇 ∈ NrmGrp)
nmoleub.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmoleub.4 (𝜑𝐴 ∈ ℝ*)
nmoleub.5 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
nmoleub (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmoleub
StepHypRef Expression
1 nmoleub.2 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
21ad2antrr 697 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑇 ∈ NrmGrp)
3 nmoleub.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
4 nmoi.2 . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
5 eqid 2770 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
64, 5ghmf 17871 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
73, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
87ad2antrr 697 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐹:𝑉⟶(Base‘𝑇))
9 simprl 746 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
10 ffvelrn 6500 . . . . . . . . 9 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
118, 9, 10syl2anc 565 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐹𝑥) ∈ (Base‘𝑇))
12 nmoi.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
135, 12nmcl 22639 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
142, 11, 13syl2anc 565 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
15 nmoleub.1 . . . . . . . . 9 (𝜑𝑆 ∈ NrmGrp)
1615adantr 466 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → 𝑆 ∈ NrmGrp)
17 nmoi.3 . . . . . . . . . 10 𝐿 = (norm‘𝑆)
18 nmoi2.z . . . . . . . . . 10 0 = (0g𝑆)
194, 17, 18nmrpcl 22643 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
20193expb 1112 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2116, 20sylan 561 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2214, 21rerpdivcld 12105 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ)
2322rexrd 10290 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ*)
24 nmofval.1 . . . . . . . 8 𝑁 = (𝑆 normOp 𝑇)
2524nmocl 22743 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
2615, 1, 3, 25syl3anc 1475 . . . . . 6 (𝜑 → (𝑁𝐹) ∈ ℝ*)
2726ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ∈ ℝ*)
28 nmoleub.4 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
2928ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐴 ∈ ℝ*)
3015, 1, 33jca 1121 . . . . . . 7 (𝜑 → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3130adantr 466 . . . . . 6 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3224, 4, 17, 12, 18nmoi2 22753 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
3331, 32sylan 561 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
34 simplr 744 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ≤ 𝐴)
3523, 27, 29, 33, 34xrletrd 12197 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)
3635expr 444 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
3736ralrimiva 3114 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
38 0le0 11311 . . . . . . . . . . 11 0 ≤ 0
39 simpllr 752 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℝ)
4039recnd 10269 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℂ)
4140mul01d 10436 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · 0) = 0)
4238, 41syl5breqr 4822 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 0 ≤ (𝐴 · 0))
43 fveq2 6332 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝐹𝑥) = (𝐹0 ))
443ad2antrr 697 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2770 . . . . . . . . . . . . . . 15 (0g𝑇) = (0g𝑇)
4618, 45ghmid 17873 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
4744, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹0 ) = (0g𝑇))
4843, 47sylan9eqr 2826 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐹𝑥) = (0g𝑇))
4948fveq2d 6336 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = (𝑀‘(0g𝑇)))
501ad3antrrr 701 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝑇 ∈ NrmGrp)
5112, 45nm0 22652 . . . . . . . . . . . 12 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5250, 51syl 17 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(0g𝑇)) = 0)
5349, 52eqtrd 2804 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = 0)
54 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
5515ad2antrr 697 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑆 ∈ NrmGrp)
5617, 18nm0 22652 . . . . . . . . . . . . 13 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
5755, 56syl 17 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐿0 ) = 0)
5854, 57sylan9eqr 2826 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐿𝑥) = 0)
5958oveq2d 6808 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · (𝐿𝑥)) = (𝐴 · 0))
6042, 53, 593brtr4d 4816 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
6160a1d 25 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
62 simpr 471 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝑥0 )
631ad2antrr 697 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
647adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑉⟶(Base‘𝑇))
6564, 10sylan 561 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
6663, 65, 13syl2anc 565 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
6766adantr 466 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
68 simpllr 752 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝐴 ∈ ℝ)
6915adantr 466 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
70193expa 1110 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7169, 70sylanl1 651 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7267, 68, 71ledivmul2d 12128 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7372biimpd 219 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7462, 73embantd 59 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7561, 74pm2.61dane 3029 . . . . . . 7 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7675ralimdva 3110 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
771adantr 466 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
783adantr 466 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
79 simpr 471 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
80 nmoleub.5 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
8180adantr 466 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 0 ≤ 𝐴)
8224, 4, 17, 12nmolb 22740 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8369, 77, 78, 79, 81, 82syl311anc 1489 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8476, 83syld 47 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑁𝐹) ≤ 𝐴))
8584imp 393 . . . 4 (((𝜑𝐴 ∈ ℝ) ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
8685an32s 623 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8726ad2antrr 697 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
88 pnfge 12168 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8987, 88syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
90 simpr 471 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
9189, 90breqtrrd 4812 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
92 ge0nemnf 12208 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
9328, 80, 92syl2anc 565 . . . . . 6 (𝜑𝐴 ≠ -∞)
9428, 93jca 495 . . . . 5 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
95 xrnemnf 12155 . . . . 5 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9694, 95sylib 208 . . . 4 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9796adantr 466 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9886, 91, 97mpjaodan 939 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9937, 98impbida 794 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 826  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wral 3060   class class class wbr 4784  wf 6027  cfv 6031  (class class class)co 6792  cr 10136  0cc0 10137   · cmul 10142  +∞cpnf 10272  -∞cmnf 10273  *cxr 10274  cle 10276   / cdiv 10885  +crp 12034  Basecbs 16063  0gc0g 16307   GrpHom cghm 17864  normcnm 22600  NrmGrpcngp 22601   normOp cnmo 22728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ico 12385  df-0g 16309  df-topgen 16311  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-ghm 17865  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-xms 22344  df-ms 22345  df-nm 22606  df-ngp 22607  df-nmo 22731  df-nghm 22732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator