MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub Structured version   Visualization version   GIF version

Theorem nmoleub 24767
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
nmoleub.1 (𝜑𝑆 ∈ NrmGrp)
nmoleub.2 (𝜑𝑇 ∈ NrmGrp)
nmoleub.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmoleub.4 (𝜑𝐴 ∈ ℝ*)
nmoleub.5 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
nmoleub (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmoleub
StepHypRef Expression
1 nmoleub.2 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
21ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑇 ∈ NrmGrp)
3 nmoleub.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
4 nmoi.2 . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
5 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
64, 5ghmf 19250 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
73, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
87ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐹:𝑉⟶(Base‘𝑇))
9 simprl 771 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
10 ffvelcdm 7100 . . . . . . . . 9 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
118, 9, 10syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐹𝑥) ∈ (Base‘𝑇))
12 nmoi.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
135, 12nmcl 24644 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
142, 11, 13syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
15 nmoleub.1 . . . . . . . . 9 (𝜑𝑆 ∈ NrmGrp)
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → 𝑆 ∈ NrmGrp)
17 nmoi.3 . . . . . . . . . 10 𝐿 = (norm‘𝑆)
18 nmoi2.z . . . . . . . . . 10 0 = (0g𝑆)
194, 17, 18nmrpcl 24648 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
20193expb 1119 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2116, 20sylan 580 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2214, 21rerpdivcld 13105 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ)
2322rexrd 11308 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ*)
24 nmofval.1 . . . . . . . 8 𝑁 = (𝑆 normOp 𝑇)
2524nmocl 24756 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
2615, 1, 3, 25syl3anc 1370 . . . . . 6 (𝜑 → (𝑁𝐹) ∈ ℝ*)
2726ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ∈ ℝ*)
28 nmoleub.4 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
2928ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐴 ∈ ℝ*)
3015, 1, 33jca 1127 . . . . . . 7 (𝜑 → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3130adantr 480 . . . . . 6 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3224, 4, 17, 12, 18nmoi2 24766 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
3331, 32sylan 580 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
34 simplr 769 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ≤ 𝐴)
3523, 27, 29, 33, 34xrletrd 13200 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)
3635expr 456 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
3736ralrimiva 3143 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
38 0le0 12364 . . . . . . . . . . 11 0 ≤ 0
39 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℝ)
4039recnd 11286 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℂ)
4140mul01d 11457 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · 0) = 0)
4238, 41breqtrrid 5185 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 0 ≤ (𝐴 · 0))
43 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝐹𝑥) = (𝐹0 ))
443ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2734 . . . . . . . . . . . . . . 15 (0g𝑇) = (0g𝑇)
4618, 45ghmid 19252 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
4744, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹0 ) = (0g𝑇))
4843, 47sylan9eqr 2796 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐹𝑥) = (0g𝑇))
4948fveq2d 6910 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = (𝑀‘(0g𝑇)))
501ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝑇 ∈ NrmGrp)
5112, 45nm0 24657 . . . . . . . . . . . 12 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5250, 51syl 17 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(0g𝑇)) = 0)
5349, 52eqtrd 2774 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = 0)
54 fveq2 6906 . . . . . . . . . . . 12 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
5515ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑆 ∈ NrmGrp)
5617, 18nm0 24657 . . . . . . . . . . . . 13 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
5755, 56syl 17 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐿0 ) = 0)
5854, 57sylan9eqr 2796 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐿𝑥) = 0)
5958oveq2d 7446 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · (𝐿𝑥)) = (𝐴 · 0))
6042, 53, 593brtr4d 5179 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
6160a1d 25 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
62 simpr 484 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝑥0 )
631ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
647adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑉⟶(Base‘𝑇))
6564, 10sylan 580 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
6663, 65, 13syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
6766adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
68 simpllr 776 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝐴 ∈ ℝ)
6915adantr 480 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
70193expa 1117 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7169, 70sylanl1 680 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7267, 68, 71ledivmul2d 13128 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7372biimpd 229 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7462, 73embantd 59 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7561, 74pm2.61dane 3026 . . . . . . 7 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7675ralimdva 3164 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
771adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
783adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
79 simpr 484 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
80 nmoleub.5 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
8180adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 0 ≤ 𝐴)
8224, 4, 17, 12nmolb 24753 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8369, 77, 78, 79, 81, 82syl311anc 1383 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8476, 83syld 47 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑁𝐹) ≤ 𝐴))
8584imp 406 . . . 4 (((𝜑𝐴 ∈ ℝ) ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
8685an32s 652 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8726ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
88 pnfge 13169 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8987, 88syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
90 simpr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
9189, 90breqtrrd 5175 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
92 ge0nemnf 13211 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
9328, 80, 92syl2anc 584 . . . . . 6 (𝜑𝐴 ≠ -∞)
9428, 93jca 511 . . . . 5 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
95 xrnemnf 13156 . . . . 5 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9694, 95sylib 218 . . . 4 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9796adantr 480 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9886, 91, 97mpjaodan 960 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9937, 98impbida 801 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058   class class class wbr 5147  wf 6558  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152   · cmul 11157  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291  cle 11293   / cdiv 11917  +crp 13031  Basecbs 17244  0gc0g 17485   GrpHom cghm 19242  normcnm 24604  NrmGrpcngp 24605   normOp cnmo 24741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-0g 17487  df-topgen 17489  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-ghm 19243  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-nmo 24744  df-nghm 24745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator