MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub Structured version   Visualization version   GIF version

Theorem nmoleub 24095
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
nmoleub.1 (𝜑𝑆 ∈ NrmGrp)
nmoleub.2 (𝜑𝑇 ∈ NrmGrp)
nmoleub.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmoleub.4 (𝜑𝐴 ∈ ℝ*)
nmoleub.5 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
nmoleub (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmoleub
StepHypRef Expression
1 nmoleub.2 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
21ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑇 ∈ NrmGrp)
3 nmoleub.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
4 nmoi.2 . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
5 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
64, 5ghmf 19012 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
73, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
87ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐹:𝑉⟶(Base‘𝑇))
9 simprl 769 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
10 ffvelcdm 7032 . . . . . . . . 9 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
118, 9, 10syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐹𝑥) ∈ (Base‘𝑇))
12 nmoi.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
135, 12nmcl 23972 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
142, 11, 13syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
15 nmoleub.1 . . . . . . . . 9 (𝜑𝑆 ∈ NrmGrp)
1615adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → 𝑆 ∈ NrmGrp)
17 nmoi.3 . . . . . . . . . 10 𝐿 = (norm‘𝑆)
18 nmoi2.z . . . . . . . . . 10 0 = (0g𝑆)
194, 17, 18nmrpcl 23976 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
20193expb 1120 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2116, 20sylan 580 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2214, 21rerpdivcld 12988 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ)
2322rexrd 11205 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ*)
24 nmofval.1 . . . . . . . 8 𝑁 = (𝑆 normOp 𝑇)
2524nmocl 24084 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
2615, 1, 3, 25syl3anc 1371 . . . . . 6 (𝜑 → (𝑁𝐹) ∈ ℝ*)
2726ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ∈ ℝ*)
28 nmoleub.4 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
2928ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐴 ∈ ℝ*)
3015, 1, 33jca 1128 . . . . . . 7 (𝜑 → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3130adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3224, 4, 17, 12, 18nmoi2 24094 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
3331, 32sylan 580 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
34 simplr 767 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ≤ 𝐴)
3523, 27, 29, 33, 34xrletrd 13081 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)
3635expr 457 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
3736ralrimiva 3143 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
38 0le0 12254 . . . . . . . . . . 11 0 ≤ 0
39 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℝ)
4039recnd 11183 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℂ)
4140mul01d 11354 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · 0) = 0)
4238, 41breqtrrid 5143 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 0 ≤ (𝐴 · 0))
43 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝐹𝑥) = (𝐹0 ))
443ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2736 . . . . . . . . . . . . . . 15 (0g𝑇) = (0g𝑇)
4618, 45ghmid 19014 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
4744, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹0 ) = (0g𝑇))
4843, 47sylan9eqr 2798 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐹𝑥) = (0g𝑇))
4948fveq2d 6846 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = (𝑀‘(0g𝑇)))
501ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝑇 ∈ NrmGrp)
5112, 45nm0 23985 . . . . . . . . . . . 12 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5250, 51syl 17 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(0g𝑇)) = 0)
5349, 52eqtrd 2776 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = 0)
54 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
5515ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑆 ∈ NrmGrp)
5617, 18nm0 23985 . . . . . . . . . . . . 13 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
5755, 56syl 17 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐿0 ) = 0)
5854, 57sylan9eqr 2798 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐿𝑥) = 0)
5958oveq2d 7373 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · (𝐿𝑥)) = (𝐴 · 0))
6042, 53, 593brtr4d 5137 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
6160a1d 25 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
62 simpr 485 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝑥0 )
631ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
647adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑉⟶(Base‘𝑇))
6564, 10sylan 580 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
6663, 65, 13syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
6766adantr 481 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
68 simpllr 774 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝐴 ∈ ℝ)
6915adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
70193expa 1118 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7169, 70sylanl1 678 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7267, 68, 71ledivmul2d 13011 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7372biimpd 228 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7462, 73embantd 59 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7561, 74pm2.61dane 3032 . . . . . . 7 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7675ralimdva 3164 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
771adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
783adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
79 simpr 485 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
80 nmoleub.5 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
8180adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 0 ≤ 𝐴)
8224, 4, 17, 12nmolb 24081 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8369, 77, 78, 79, 81, 82syl311anc 1384 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8476, 83syld 47 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑁𝐹) ≤ 𝐴))
8584imp 407 . . . 4 (((𝜑𝐴 ∈ ℝ) ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
8685an32s 650 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8726ad2antrr 724 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
88 pnfge 13051 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8987, 88syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
90 simpr 485 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
9189, 90breqtrrd 5133 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
92 ge0nemnf 13092 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
9328, 80, 92syl2anc 584 . . . . . 6 (𝜑𝐴 ≠ -∞)
9428, 93jca 512 . . . . 5 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
95 xrnemnf 13038 . . . . 5 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9694, 95sylib 217 . . . 4 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9796adantr 481 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9886, 91, 97mpjaodan 957 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9937, 98impbida 799 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051   · cmul 11056  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188  cle 11190   / cdiv 11812  +crp 12915  Basecbs 17083  0gc0g 17321   GrpHom cghm 19005  normcnm 23932  NrmGrpcngp 23933   normOp cnmo 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-ghm 19006  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-nmo 24072  df-nghm 24073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator