MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub Structured version   Visualization version   GIF version

Theorem nmoleub 24239
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
nmoleub.1 (𝜑𝑆 ∈ NrmGrp)
nmoleub.2 (𝜑𝑇 ∈ NrmGrp)
nmoleub.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmoleub.4 (𝜑𝐴 ∈ ℝ*)
nmoleub.5 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
nmoleub (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmoleub
StepHypRef Expression
1 nmoleub.2 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
21ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑇 ∈ NrmGrp)
3 nmoleub.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
4 nmoi.2 . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
5 eqid 2732 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
64, 5ghmf 19090 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
73, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
87ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐹:𝑉⟶(Base‘𝑇))
9 simprl 769 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
10 ffvelcdm 7080 . . . . . . . . 9 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
118, 9, 10syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐹𝑥) ∈ (Base‘𝑇))
12 nmoi.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
135, 12nmcl 24116 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
142, 11, 13syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
15 nmoleub.1 . . . . . . . . 9 (𝜑𝑆 ∈ NrmGrp)
1615adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → 𝑆 ∈ NrmGrp)
17 nmoi.3 . . . . . . . . . 10 𝐿 = (norm‘𝑆)
18 nmoi2.z . . . . . . . . . 10 0 = (0g𝑆)
194, 17, 18nmrpcl 24120 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
20193expb 1120 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2116, 20sylan 580 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2214, 21rerpdivcld 13043 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ)
2322rexrd 11260 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ*)
24 nmofval.1 . . . . . . . 8 𝑁 = (𝑆 normOp 𝑇)
2524nmocl 24228 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
2615, 1, 3, 25syl3anc 1371 . . . . . 6 (𝜑 → (𝑁𝐹) ∈ ℝ*)
2726ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ∈ ℝ*)
28 nmoleub.4 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
2928ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐴 ∈ ℝ*)
3015, 1, 33jca 1128 . . . . . . 7 (𝜑 → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3130adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3224, 4, 17, 12, 18nmoi2 24238 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
3331, 32sylan 580 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
34 simplr 767 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ≤ 𝐴)
3523, 27, 29, 33, 34xrletrd 13137 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)
3635expr 457 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
3736ralrimiva 3146 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
38 0le0 12309 . . . . . . . . . . 11 0 ≤ 0
39 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℝ)
4039recnd 11238 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℂ)
4140mul01d 11409 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · 0) = 0)
4238, 41breqtrrid 5185 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 0 ≤ (𝐴 · 0))
43 fveq2 6888 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝐹𝑥) = (𝐹0 ))
443ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2732 . . . . . . . . . . . . . . 15 (0g𝑇) = (0g𝑇)
4618, 45ghmid 19092 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
4744, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹0 ) = (0g𝑇))
4843, 47sylan9eqr 2794 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐹𝑥) = (0g𝑇))
4948fveq2d 6892 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = (𝑀‘(0g𝑇)))
501ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝑇 ∈ NrmGrp)
5112, 45nm0 24129 . . . . . . . . . . . 12 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5250, 51syl 17 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(0g𝑇)) = 0)
5349, 52eqtrd 2772 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = 0)
54 fveq2 6888 . . . . . . . . . . . 12 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
5515ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑆 ∈ NrmGrp)
5617, 18nm0 24129 . . . . . . . . . . . . 13 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
5755, 56syl 17 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐿0 ) = 0)
5854, 57sylan9eqr 2794 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐿𝑥) = 0)
5958oveq2d 7421 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · (𝐿𝑥)) = (𝐴 · 0))
6042, 53, 593brtr4d 5179 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
6160a1d 25 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
62 simpr 485 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝑥0 )
631ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
647adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑉⟶(Base‘𝑇))
6564, 10sylan 580 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
6663, 65, 13syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
6766adantr 481 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
68 simpllr 774 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝐴 ∈ ℝ)
6915adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
70193expa 1118 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7169, 70sylanl1 678 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7267, 68, 71ledivmul2d 13066 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7372biimpd 228 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7462, 73embantd 59 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7561, 74pm2.61dane 3029 . . . . . . 7 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7675ralimdva 3167 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
771adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
783adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
79 simpr 485 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
80 nmoleub.5 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
8180adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 0 ≤ 𝐴)
8224, 4, 17, 12nmolb 24225 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8369, 77, 78, 79, 81, 82syl311anc 1384 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8476, 83syld 47 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑁𝐹) ≤ 𝐴))
8584imp 407 . . . 4 (((𝜑𝐴 ∈ ℝ) ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
8685an32s 650 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8726ad2antrr 724 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
88 pnfge 13106 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8987, 88syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
90 simpr 485 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
9189, 90breqtrrd 5175 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
92 ge0nemnf 13148 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
9328, 80, 92syl2anc 584 . . . . . 6 (𝜑𝐴 ≠ -∞)
9428, 93jca 512 . . . . 5 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
95 xrnemnf 13093 . . . . 5 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9694, 95sylib 217 . . . 4 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9796adantr 481 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9886, 91, 97mpjaodan 957 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9937, 98impbida 799 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061   class class class wbr 5147  wf 6536  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106   · cmul 11111  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243  cle 11245   / cdiv 11867  +crp 12970  Basecbs 17140  0gc0g 17381   GrpHom cghm 19083  normcnm 24076  NrmGrpcngp 24077   normOp cnmo 24213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ico 13326  df-0g 17383  df-topgen 17385  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-ghm 19084  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-xms 23817  df-ms 23818  df-nm 24082  df-ngp 24083  df-nmo 24216  df-nghm 24217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator