|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg1a | Structured version Visualization version GIF version | ||
| Description: Shorter expression for 𝐺. TODO: fix comment. TODO: shorten using cdleme 40562 or vice-versa? Also, if not shortened with cdleme 40562, then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| cdlemg1.b | ⊢ 𝐵 = (Base‘𝐾) | 
| cdlemg1.l | ⊢ ≤ = (le‘𝐾) | 
| cdlemg1.j | ⊢ ∨ = (join‘𝐾) | 
| cdlemg1.m | ⊢ ∧ = (meet‘𝐾) | 
| cdlemg1.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| cdlemg1.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| cdlemg1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| cdlemg1.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | 
| cdlemg1.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | 
| cdlemg1.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | 
| cdlemg1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| Ref | Expression | 
|---|---|
| cdlemg1a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cdlemg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemg1.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemg1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemg1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemg1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemg1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemg1.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | cdlemg1.d | . . . 4 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 9 | cdlemg1.e | . . . 4 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemg1.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 11 | cdlemg1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdleme50ltrn 40559 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | 
| 13 | simpll1 1213 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 14 | simplr 769 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝑓 ∈ 𝑇) | |
| 15 | 12 | ad2antrr 726 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝐺 ∈ 𝑇) | 
| 16 | simpll2 1214 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 17 | simpr 484 | . . . . . . 7 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑓‘𝑃) = 𝑄) | |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme17d 40500 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑄) | 
| 19 | 18 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝐺‘𝑃) = 𝑄) | 
| 20 | 17, 19 | eqtr4d 2780 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑓‘𝑃) = (𝐺‘𝑃)) | 
| 21 | 2, 5, 6, 11 | cdlemd 40209 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑓‘𝑃) = (𝐺‘𝑃)) → 𝑓 = 𝐺) | 
| 22 | 13, 14, 15, 16, 20, 21 | syl311anc 1386 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝑓 = 𝐺) | 
| 23 | 22 | ex 412 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑓‘𝑃) = 𝑄 → 𝑓 = 𝐺)) | 
| 24 | 18 | adantr 480 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → (𝐺‘𝑃) = 𝑄) | 
| 25 | fveq1 6905 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑓‘𝑃) = (𝐺‘𝑃)) | |
| 26 | 25 | eqeq1d 2739 | . . . . 5 ⊢ (𝑓 = 𝐺 → ((𝑓‘𝑃) = 𝑄 ↔ (𝐺‘𝑃) = 𝑄)) | 
| 27 | 24, 26 | syl5ibrcom 247 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → (𝑓 = 𝐺 → (𝑓‘𝑃) = 𝑄)) | 
| 28 | 23, 27 | impbid 212 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑓‘𝑃) = 𝑄 ↔ 𝑓 = 𝐺)) | 
| 29 | 12, 28 | riota5 7417 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) = 𝐺) | 
| 30 | 29 | eqcomd 2743 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⦋csb 3899 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 meetcmee 18358 Atomscatm 39264 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-riotaBAD 38954 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-undef 8298 df-map 8868 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 | 
| This theorem is referenced by: cdlemg1b2 40573 | 
| Copyright terms: Public domain | W3C validator |