Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg1a | Structured version Visualization version GIF version |
Description: Shorter expression for 𝐺. TODO: fix comment. TODO: shorten using cdleme 38800 or vice-versa? Also, if not shortened with cdleme 38800, then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg1.l | ⊢ ≤ = (le‘𝐾) |
cdlemg1.j | ⊢ ∨ = (join‘𝐾) |
cdlemg1.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdlemg1.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdlemg1.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemg1.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
cdlemg1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg1a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemg1.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemg1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemg1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg1.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | cdlemg1.d | . . . 4 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
9 | cdlemg1.e | . . . 4 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemg1.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
11 | cdlemg1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdleme50ltrn 38797 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
13 | simpll1 1211 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | simplr 766 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝑓 ∈ 𝑇) | |
15 | 12 | ad2antrr 723 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝐺 ∈ 𝑇) |
16 | simpll2 1212 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
17 | simpr 485 | . . . . . . 7 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑓‘𝑃) = 𝑄) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme17d 38738 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑄) |
19 | 18 | ad2antrr 723 | . . . . . . 7 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝐺‘𝑃) = 𝑄) |
20 | 17, 19 | eqtr4d 2779 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑓‘𝑃) = (𝐺‘𝑃)) |
21 | 2, 5, 6, 11 | cdlemd 38447 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑓‘𝑃) = (𝐺‘𝑃)) → 𝑓 = 𝐺) |
22 | 13, 14, 15, 16, 20, 21 | syl311anc 1383 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝑓 = 𝐺) |
23 | 22 | ex 413 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑓‘𝑃) = 𝑄 → 𝑓 = 𝐺)) |
24 | 18 | adantr 481 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → (𝐺‘𝑃) = 𝑄) |
25 | fveq1 6810 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑓‘𝑃) = (𝐺‘𝑃)) | |
26 | 25 | eqeq1d 2738 | . . . . 5 ⊢ (𝑓 = 𝐺 → ((𝑓‘𝑃) = 𝑄 ↔ (𝐺‘𝑃) = 𝑄)) |
27 | 24, 26 | syl5ibrcom 246 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → (𝑓 = 𝐺 → (𝑓‘𝑃) = 𝑄)) |
28 | 23, 27 | impbid 211 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑓‘𝑃) = 𝑄 ↔ 𝑓 = 𝐺)) |
29 | 12, 28 | riota5 7303 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) = 𝐺) |
30 | 29 | eqcomd 2742 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ⦋csb 3841 ifcif 4470 class class class wbr 5086 ↦ cmpt 5169 ‘cfv 6465 ℩crio 7272 (class class class)co 7316 Basecbs 16986 lecple 17043 joincjn 18103 meetcmee 18104 Atomscatm 37502 HLchlt 37589 LHypclh 38224 LTrncltrn 38341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-riotaBAD 37192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-undef 8137 df-map 8666 df-proset 18087 df-poset 18105 df-plt 18122 df-lub 18138 df-glb 18139 df-join 18140 df-meet 18141 df-p0 18217 df-p1 18218 df-lat 18224 df-clat 18291 df-oposet 37415 df-ol 37417 df-oml 37418 df-covers 37505 df-ats 37506 df-atl 37537 df-cvlat 37561 df-hlat 37590 df-llines 37738 df-lplanes 37739 df-lvols 37740 df-lines 37741 df-psubsp 37743 df-pmap 37744 df-padd 38036 df-lhyp 38228 df-laut 38229 df-ldil 38344 df-ltrn 38345 df-trl 38399 |
This theorem is referenced by: cdlemg1b2 38811 |
Copyright terms: Public domain | W3C validator |