| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg1a | Structured version Visualization version GIF version | ||
| Description: Shorter expression for 𝐺. TODO: fix comment. TODO: shorten using cdleme 40527 or vice-versa? Also, if not shortened with cdleme 40527, then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemg1.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemg1.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg1.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg1.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdlemg1.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg1.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg1.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| cdlemg1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemg1a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemg1.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemg1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemg1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemg1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemg1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemg1.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | cdlemg1.d | . . . 4 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 9 | cdlemg1.e | . . . 4 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemg1.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 11 | cdlemg1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdleme50ltrn 40524 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 13 | simpll1 1213 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 14 | simplr 768 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝑓 ∈ 𝑇) | |
| 15 | 12 | ad2antrr 726 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝐺 ∈ 𝑇) |
| 16 | simpll2 1214 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 17 | simpr 484 | . . . . . . 7 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑓‘𝑃) = 𝑄) | |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme17d 40465 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑄) |
| 19 | 18 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝐺‘𝑃) = 𝑄) |
| 20 | 17, 19 | eqtr4d 2767 | . . . . . 6 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → (𝑓‘𝑃) = (𝐺‘𝑃)) |
| 21 | 2, 5, 6, 11 | cdlemd 40174 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑓‘𝑃) = (𝐺‘𝑃)) → 𝑓 = 𝐺) |
| 22 | 13, 14, 15, 16, 20, 21 | syl311anc 1386 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) ∧ (𝑓‘𝑃) = 𝑄) → 𝑓 = 𝐺) |
| 23 | 22 | ex 412 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑓‘𝑃) = 𝑄 → 𝑓 = 𝐺)) |
| 24 | 18 | adantr 480 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → (𝐺‘𝑃) = 𝑄) |
| 25 | fveq1 6839 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑓‘𝑃) = (𝐺‘𝑃)) | |
| 26 | 25 | eqeq1d 2731 | . . . . 5 ⊢ (𝑓 = 𝐺 → ((𝑓‘𝑃) = 𝑄 ↔ (𝐺‘𝑃) = 𝑄)) |
| 27 | 24, 26 | syl5ibrcom 247 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → (𝑓 = 𝐺 → (𝑓‘𝑃) = 𝑄)) |
| 28 | 23, 27 | impbid 212 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑓‘𝑃) = 𝑄 ↔ 𝑓 = 𝐺)) |
| 29 | 12, 28 | riota5 7355 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) = 𝐺) |
| 30 | 29 | eqcomd 2735 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⦋csb 3859 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 meetcmee 18249 Atomscatm 39229 HLchlt 39316 LHypclh 39951 LTrncltrn 40068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-undef 8229 df-map 8778 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 |
| This theorem is referenced by: cdlemg1b2 40538 |
| Copyright terms: Public domain | W3C validator |