Proof of Theorem ltrniotavalbN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1 1192 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simpl3 1194 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → 𝐹 ∈ 𝑇) | 
| 3 |  | simpl2l 1227 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 4 |  | simpl2r 1228 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 5 |  | ltrniotavalb.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 6 |  | ltrniotavalb.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 |  | ltrniotavalb.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 8 |  | ltrniotavalb.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 9 |  | eqid 2737 | . . . . 5
⊢
(℩𝑓
∈ 𝑇 (𝑓‘𝑃) = 𝑄) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | 
| 10 | 5, 6, 7, 8, 9 | ltrniotacl 40581 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) ∈ 𝑇) | 
| 11 | 1, 3, 4, 10 | syl3anc 1373 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) ∈ 𝑇) | 
| 12 |  | simpr 484 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝐹‘𝑃) = 𝑄) | 
| 13 | 5, 6, 7, 8, 9 | ltrniotaval 40583 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃) = 𝑄) | 
| 14 | 1, 3, 4, 13 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃) = 𝑄) | 
| 15 | 12, 14 | eqtr4d 2780 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝐹‘𝑃) = ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃)) | 
| 16 | 5, 6, 7, 8 | cdlemd 40209 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃)) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) | 
| 17 | 1, 2, 11, 3, 15, 16 | syl311anc 1386 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) | 
| 18 |  | fveq1 6905 | . . 3
⊢ (𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) → (𝐹‘𝑃) = ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃)) | 
| 19 |  | simp1 1137 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 20 |  | simp2l 1200 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 21 |  | simp2r 1201 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 22 | 19, 20, 21, 13 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃) = 𝑄) | 
| 23 | 18, 22 | sylan9eqr 2799 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) → (𝐹‘𝑃) = 𝑄) | 
| 24 | 17, 23 | impbida 801 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) = 𝑄 ↔ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄))) |