Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotavalbN Structured version   Visualization version   GIF version

Theorem ltrniotavalbN 36605
Description: Value of the unique translation specified by a value. (Contributed by NM, 10-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotavalb.l = (le‘𝐾)
ltrniotavalb.a 𝐴 = (Atoms‘𝐾)
ltrniotavalb.h 𝐻 = (LHyp‘𝐾)
ltrniotavalb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrniotavalbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) = 𝑄𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐹(𝑓)

Proof of Theorem ltrniotavalbN
StepHypRef Expression
1 simpl1 1243 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → 𝐹𝑇)
3 simpl2l 1298 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simpl2r 1300 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 ltrniotavalb.l . . . . 5 = (le‘𝐾)
6 ltrniotavalb.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 ltrniotavalb.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 ltrniotavalb.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 eqid 2799 . . . . 5 (𝑓𝑇 (𝑓𝑃) = 𝑄) = (𝑓𝑇 (𝑓𝑃) = 𝑄)
105, 6, 7, 8, 9ltrniotacl 36600 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑓𝑇 (𝑓𝑃) = 𝑄) ∈ 𝑇)
111, 3, 4, 10syl3anc 1491 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝑓𝑇 (𝑓𝑃) = 𝑄) ∈ 𝑇)
12 simpr 478 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑃) = 𝑄)
135, 6, 7, 8, 9ltrniotaval 36602 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃) = 𝑄)
141, 3, 4, 13syl3anc 1491 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃) = 𝑄)
1512, 14eqtr4d 2836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑃) = ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃))
165, 6, 7, 8cdlemd 36228 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑓𝑇 (𝑓𝑃) = 𝑄) ∈ 𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃)) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄))
171, 2, 11, 3, 15, 16syl311anc 1504 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄))
18 fveq1 6410 . . 3 (𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄) → (𝐹𝑃) = ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃))
19 simp1 1167 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simp2l 1257 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 simp2r 1258 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
2219, 20, 21, 13syl3anc 1491 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃) = 𝑄)
2318, 22sylan9eqr 2855 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)) → (𝐹𝑃) = 𝑄)
2417, 23impbida 836 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) = 𝑄𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4843  cfv 6101  crio 6838  lecple 16274  Atomscatm 35284  HLchlt 35371  LHypclh 36005  LTrncltrn 36122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-undef 7637  df-map 8097  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator