Proof of Theorem ltrniotavalbN
Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl3 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → 𝐹 ∈ 𝑇) |
3 | | simpl2l 1225 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simpl2r 1226 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
5 | | ltrniotavalb.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
6 | | ltrniotavalb.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | ltrniotavalb.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
8 | | ltrniotavalb.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
9 | | eqid 2738 |
. . . . 5
⊢
(℩𝑓
∈ 𝑇 (𝑓‘𝑃) = 𝑄) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
10 | 5, 6, 7, 8, 9 | ltrniotacl 38593 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) ∈ 𝑇) |
11 | 1, 3, 4, 10 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) ∈ 𝑇) |
12 | | simpr 485 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝐹‘𝑃) = 𝑄) |
13 | 5, 6, 7, 8, 9 | ltrniotaval 38595 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃) = 𝑄) |
14 | 1, 3, 4, 13 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃) = 𝑄) |
15 | 12, 14 | eqtr4d 2781 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → (𝐹‘𝑃) = ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃)) |
16 | 5, 6, 7, 8 | cdlemd 38221 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃)) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
17 | 1, 2, 11, 3, 15, 16 | syl311anc 1383 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ (𝐹‘𝑃) = 𝑄) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
18 | | fveq1 6773 |
. . 3
⊢ (𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) → (𝐹‘𝑃) = ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃)) |
19 | | simp1 1135 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | | simp2l 1198 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
21 | | simp2r 1199 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
22 | 19, 20, 21, 13 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)‘𝑃) = 𝑄) |
23 | 18, 22 | sylan9eqr 2800 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) → (𝐹‘𝑃) = 𝑄) |
24 | 17, 23 | impbida 798 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) = 𝑄 ↔ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄))) |