Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotavalbN Structured version   Visualization version   GIF version

Theorem ltrniotavalbN 38525
Description: Value of the unique translation specified by a value. (Contributed by NM, 10-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotavalb.l = (le‘𝐾)
ltrniotavalb.a 𝐴 = (Atoms‘𝐾)
ltrniotavalb.h 𝐻 = (LHyp‘𝐾)
ltrniotavalb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrniotavalbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) = 𝑄𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐹(𝑓)

Proof of Theorem ltrniotavalbN
StepHypRef Expression
1 simpl1 1189 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → 𝐹𝑇)
3 simpl2l 1224 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simpl2r 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 ltrniotavalb.l . . . . 5 = (le‘𝐾)
6 ltrniotavalb.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 ltrniotavalb.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 ltrniotavalb.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 eqid 2738 . . . . 5 (𝑓𝑇 (𝑓𝑃) = 𝑄) = (𝑓𝑇 (𝑓𝑃) = 𝑄)
105, 6, 7, 8, 9ltrniotacl 38520 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑓𝑇 (𝑓𝑃) = 𝑄) ∈ 𝑇)
111, 3, 4, 10syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝑓𝑇 (𝑓𝑃) = 𝑄) ∈ 𝑇)
12 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑃) = 𝑄)
135, 6, 7, 8, 9ltrniotaval 38522 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃) = 𝑄)
141, 3, 4, 13syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃) = 𝑄)
1512, 14eqtr4d 2781 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑃) = ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃))
165, 6, 7, 8cdlemd 38148 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑓𝑇 (𝑓𝑃) = 𝑄) ∈ 𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃)) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄))
171, 2, 11, 3, 15, 16syl311anc 1382 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ (𝐹𝑃) = 𝑄) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄))
18 fveq1 6755 . . 3 (𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄) → (𝐹𝑃) = ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃))
19 simp1 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simp2l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 simp2r 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
2219, 20, 21, 13syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝑓𝑇 (𝑓𝑃) = 𝑄)‘𝑃) = 𝑄)
2318, 22sylan9eqr 2801 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)) → (𝐹𝑃) = 𝑄)
2417, 23impbida 797 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) = 𝑄𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  crio 7211  lecple 16895  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator