Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44 Structured version   Visualization version   GIF version

Theorem cdlemg44 39604
Description: Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h 𝐻 = (LHypβ€˜πΎ)
cdlemg44.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg44.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg44 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹))

Proof of Theorem cdlemg44
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
2 eqid 2733 . . . 4 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
3 cdlemg44.h . . . 4 𝐻 = (LHypβ€˜πΎ)
41, 2, 3lhpexnle 38877 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ (Atomsβ€˜πΎ) Β¬ 𝑝(leβ€˜πΎ)π‘Š)
543ad2ant1 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ βˆƒπ‘ ∈ (Atomsβ€˜πΎ) Β¬ 𝑝(leβ€˜πΎ)π‘Š)
6 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
7 simp12l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ 𝐹 ∈ 𝑇)
8 simp12r 1288 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ 𝐺 ∈ 𝑇)
9 cdlemg44.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
103, 9ltrnco 39590 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
116, 7, 8, 10syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
123, 9ltrnco 39590 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) β†’ (𝐺 ∘ 𝐹) ∈ 𝑇)
136, 8, 7, 12syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (𝐺 ∘ 𝐹) ∈ 𝑇)
14 3simpc 1151 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š))
15 simp13 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))
16 cdlemg44.r . . . . . . 7 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
173, 9, 16, 1, 2cdlemg44b 39603 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (πΉβ€˜(πΊβ€˜π‘)) = (πΊβ€˜(πΉβ€˜π‘)))
186, 7, 8, 14, 15, 17syl131anc 1384 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (πΉβ€˜(πΊβ€˜π‘)) = (πΊβ€˜(πΉβ€˜π‘)))
19 simp12 1205 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))
20 simp2 1138 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ 𝑝 ∈ (Atomsβ€˜πΎ))
211, 2, 3, 9ltrncoval 39016 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ ((𝐹 ∘ 𝐺)β€˜π‘) = (πΉβ€˜(πΊβ€˜π‘)))
226, 19, 20, 21syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ ((𝐹 ∘ 𝐺)β€˜π‘) = (πΉβ€˜(πΊβ€˜π‘)))
231, 2, 3, 9ltrncoval 39016 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ ((𝐺 ∘ 𝐹)β€˜π‘) = (πΊβ€˜(πΉβ€˜π‘)))
246, 8, 7, 20, 23syl121anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ ((𝐺 ∘ 𝐹)β€˜π‘) = (πΊβ€˜(πΉβ€˜π‘)))
2518, 22, 243eqtr4d 2783 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ ((𝐹 ∘ 𝐺)β€˜π‘) = ((𝐺 ∘ 𝐹)β€˜π‘))
261, 2, 3, 9cdlemd 39078 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇 ∧ (𝐺 ∘ 𝐹) ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ ((𝐹 ∘ 𝐺)β€˜π‘) = ((𝐺 ∘ 𝐹)β€˜π‘)) β†’ (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹))
276, 11, 13, 14, 25, 26syl311anc 1385 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) ∧ 𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) β†’ (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹))
2827rexlimdv3a 3160 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (βˆƒπ‘ ∈ (Atomsβ€˜πΎ) Β¬ 𝑝(leβ€˜πΎ)π‘Š β†’ (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)))
295, 28mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆƒwrex 3071   class class class wbr 5149   ∘ ccom 5681  β€˜cfv 6544  lecple 17204  Atomscatm 38133  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  trLctrl 39029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-riotaBAD 37823
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-undef 8258  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030
This theorem is referenced by:  cdlemg47  39607  ltrncom  39609
  Copyright terms: Public domain W3C validator