Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44 Structured version   Visualization version   GIF version

Theorem cdlemg44 37987
Description: Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h 𝐻 = (LHyp‘𝐾)
cdlemg44.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg44.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg44 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem cdlemg44
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2822 . . . 4 (le‘𝐾) = (le‘𝐾)
2 eqid 2822 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
3 cdlemg44.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 37260 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊)
543ad2ant1 1130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊)
6 simp11 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp12l 1283 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → 𝐹𝑇)
8 simp12r 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → 𝐺𝑇)
9 cdlemg44.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
103, 9ltrnco 37973 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
116, 7, 8, 10syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝐹𝐺) ∈ 𝑇)
123, 9ltrnco 37973 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
136, 8, 7, 12syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝐺𝐹) ∈ 𝑇)
14 3simpc 1147 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp13 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝑅𝐹) ≠ (𝑅𝐺))
16 cdlemg44.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
173, 9, 16, 1, 2cdlemg44b 37986 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑝)) = (𝐺‘(𝐹𝑝)))
186, 7, 8, 14, 15, 17syl131anc 1380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝐹‘(𝐺𝑝)) = (𝐺‘(𝐹𝑝)))
19 simp12 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝐹𝑇𝐺𝑇))
20 simp2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → 𝑝 ∈ (Atoms‘𝐾))
211, 2, 3, 9ltrncoval 37399 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝐹𝐺)‘𝑝) = (𝐹‘(𝐺𝑝)))
226, 19, 20, 21syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑝) = (𝐹‘(𝐺𝑝)))
231, 2, 3, 9ltrncoval 37399 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝐺𝐹)‘𝑝) = (𝐺‘(𝐹𝑝)))
246, 8, 7, 20, 23syl121anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → ((𝐺𝐹)‘𝑝) = (𝐺‘(𝐹𝑝)))
2518, 22, 243eqtr4d 2867 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑝) = ((𝐺𝐹)‘𝑝))
261, 2, 3, 9cdlemd 37461 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇 ∧ (𝐺𝐹) ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ ((𝐹𝐺)‘𝑝) = ((𝐺𝐹)‘𝑝)) → (𝐹𝐺) = (𝐺𝐹))
276, 11, 13, 14, 25, 26syl311anc 1381 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) → (𝐹𝐺) = (𝐺𝐹))
2827rexlimdv3a 3272 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊 → (𝐹𝐺) = (𝐺𝐹)))
295, 28mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wrex 3131   class class class wbr 5042  ccom 5536  cfv 6334  lecple 16563  Atomscatm 36517  HLchlt 36604  LHypclh 37238  LTrncltrn 37355  trLctrl 37412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-riotaBAD 36207
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-undef 7926  df-map 8395  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-oposet 36430  df-ol 36432  df-oml 36433  df-covers 36520  df-ats 36521  df-atl 36552  df-cvlat 36576  df-hlat 36605  df-llines 36752  df-lplanes 36753  df-lvols 36754  df-lines 36755  df-psubsp 36757  df-pmap 36758  df-padd 37050  df-lhyp 37242  df-laut 37243  df-ldil 37358  df-ltrn 37359  df-trl 37413
This theorem is referenced by:  cdlemg47  37990  ltrncom  37992
  Copyright terms: Public domain W3C validator