Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk53a Structured version   Visualization version   GIF version

Theorem cdlemk53a 40337
Description: Lemma for cdlemk53 40339. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk5.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
cdlemk5.y π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdlemk5.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
Assertion
Ref Expression
cdlemk53a ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
Distinct variable groups:   ∧ ,𝑔   ∨ ,𝑔   𝐡,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ∧ ,𝑏,𝑧   ≀ ,𝑏   𝑧,𝑔, ≀   ∨ ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐡,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   π‘Œ(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk53a
StepHypRef Expression
1 simp11l 1281 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐾 ∈ HL)
2 simp11r 1282 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ π‘Š ∈ 𝐻)
31, 2jca 511 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 simp12 1201 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)))
5 simp13l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐺 ∈ 𝑇)
6 simp31 1206 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐼 ∈ 𝑇)
7 cdlemk5.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
8 cdlemk5.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
97, 8ltrnco 40101 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) β†’ (𝐺 ∘ 𝐼) ∈ 𝑇)
101, 2, 5, 6, 9syl211anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐺 ∘ 𝐼) ∈ 𝑇)
11 simp33 1208 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))
12 cdlemk5.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
13 cdlemk5.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
1412, 7, 8, 13trlconid 40107 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ)) β†’ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡))
153, 5, 6, 11, 14syl121anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡))
1610, 15jca 511 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡)))
17 simp21 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝑁 ∈ 𝑇)
18 simp22 1204 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
19 simp23 1205 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
20 cdlemk5.l . . . 4 ≀ = (leβ€˜πΎ)
21 cdlemk5.j . . . 4 ∨ = (joinβ€˜πΎ)
22 cdlemk5.m . . . 4 ∧ = (meetβ€˜πΎ)
23 cdlemk5.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
24 cdlemk5.z . . . 4 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
25 cdlemk5.y . . . 4 π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
26 cdlemk5.x . . . 4 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
2712, 20, 21, 22, 23, 7, 8, 13, 24, 25, 26cdlemk35s 40319 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ ∈ 𝑇)
283, 4, 16, 17, 18, 19, 27syl132anc 1385 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ ∈ 𝑇)
29 simp13 1202 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)))
3012, 20, 21, 22, 23, 7, 8, 13, 24, 25, 26cdlemk35s 40319 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇)
313, 4, 29, 17, 18, 19, 30syl132anc 1385 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇)
32 simp32 1207 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐼 β‰  ( I β†Ύ 𝐡))
336, 32jca 511 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡)))
3412, 20, 21, 22, 23, 7, 8, 13, 24, 25, 26cdlemk35s 40319 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇)
353, 4, 33, 17, 18, 19, 34syl132anc 1385 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇)
367, 8ltrnco 40101 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇 ∧ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) ∈ 𝑇)
371, 2, 31, 35, 36syl211anc 1373 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) ∈ 𝑇)
3812, 20, 21, 22, 23, 7, 8, 13, 24, 25, 26cdlemk52 40336 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ) = (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ))
3938eqcomd 2732 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) = ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ))
4020, 23, 7, 8cdlemd 39589 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ ∈ 𝑇 ∧ (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹β€˜π‘ƒ) = ((⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹)β€˜π‘ƒ)) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
413, 28, 37, 18, 39, 40syl311anc 1381 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  β¦‹csb 3888   class class class wbr 5141   I cid 5566  β—‘ccnv 5668   β†Ύ cres 5671   ∘ ccom 5673  β€˜cfv 6536  β„©crio 7359  (class class class)co 7404  Basecbs 17151  lecple 17211  joincjn 18274  meetcmee 18275  Atomscatm 38644  HLchlt 38731  LHypclh 39366  LTrncltrn 39483  trLctrl 39540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-riotaBAD 38334
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-undef 8256  df-map 8821  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38557  df-ol 38559  df-oml 38560  df-covers 38647  df-ats 38648  df-atl 38679  df-cvlat 38703  df-hlat 38732  df-llines 38880  df-lplanes 38881  df-lvols 38882  df-lines 38883  df-psubsp 38885  df-pmap 38886  df-padd 39178  df-lhyp 39370  df-laut 39371  df-ldil 39486  df-ltrn 39487  df-trl 39541
This theorem is referenced by:  cdlemk53b  40338
  Copyright terms: Public domain W3C validator