Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem4 Structured version   Visualization version   GIF version

Theorem dia2dimlem4 41024
Description: Lemma for dia2dim 41034. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem4.l = (le‘𝐾)
dia2dimlem4.a 𝐴 = (Atoms‘𝐾)
dia2dimlem4.h 𝐻 = (LHyp‘𝐾)
dia2dimlem4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem4.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem4.f (𝜑𝐹𝑇)
dia2dimlem4.g (𝜑𝐺𝑇)
dia2dimlem4.gv (𝜑 → (𝐺𝑃) = 𝑄)
dia2dimlem4.d (𝜑𝐷𝑇)
dia2dimlem4.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem4 (𝜑 → (𝐷𝐺) = 𝐹)

Proof of Theorem dia2dimlem4
StepHypRef Expression
1 dia2dimlem4.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dia2dimlem4.d . . 3 (𝜑𝐷𝑇)
3 dia2dimlem4.g . . 3 (𝜑𝐺𝑇)
4 dia2dimlem4.h . . . 4 𝐻 = (LHyp‘𝐾)
5 dia2dimlem4.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrnco 40676 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇𝐺𝑇) → (𝐷𝐺) ∈ 𝑇)
71, 2, 3, 6syl3anc 1371 . 2 (𝜑 → (𝐷𝐺) ∈ 𝑇)
8 dia2dimlem4.f . 2 (𝜑𝐹𝑇)
9 dia2dimlem4.p . 2 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
109simpld 494 . . . 4 (𝜑𝑃𝐴)
11 dia2dimlem4.l . . . . 5 = (le‘𝐾)
12 dia2dimlem4.a . . . . 5 𝐴 = (Atoms‘𝐾)
1311, 12, 4, 5ltrncoval 40102 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
141, 2, 3, 10, 13syl121anc 1375 . . 3 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
15 dia2dimlem4.gv . . . 4 (𝜑 → (𝐺𝑃) = 𝑄)
1615fveq2d 6924 . . 3 (𝜑 → (𝐷‘(𝐺𝑃)) = (𝐷𝑄))
17 dia2dimlem4.dv . . 3 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
1814, 16, 173eqtrd 2784 . 2 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐹𝑃))
1911, 12, 4, 5cdlemd 40164 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝐺) ∈ 𝑇𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐷𝐺)‘𝑃) = (𝐹𝑃)) → (𝐷𝐺) = 𝐹)
201, 7, 8, 9, 18, 19syl311anc 1384 1 (𝜑 → (𝐷𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  ccom 5704  cfv 6573  lecple 17318  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  dia2dimlem5  41025
  Copyright terms: Public domain W3C validator