| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia2dimlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for dia2dim 41066. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| dia2dimlem4.l | ⊢ ≤ = (le‘𝐾) |
| dia2dimlem4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dia2dimlem4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia2dimlem4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dia2dimlem4.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dia2dimlem4.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| dia2dimlem4.f | ⊢ (𝜑 → 𝐹 ∈ 𝑇) |
| dia2dimlem4.g | ⊢ (𝜑 → 𝐺 ∈ 𝑇) |
| dia2dimlem4.gv | ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) |
| dia2dimlem4.d | ⊢ (𝜑 → 𝐷 ∈ 𝑇) |
| dia2dimlem4.dv | ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) |
| Ref | Expression |
|---|---|
| dia2dimlem4 | ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dia2dimlem4.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | dia2dimlem4.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑇) | |
| 3 | dia2dimlem4.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑇) | |
| 4 | dia2dimlem4.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dia2dimlem4.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | 4, 5 | ltrnco 40708 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐷 ∘ 𝐺) ∈ 𝑇) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐷 ∘ 𝐺) ∈ 𝑇) |
| 8 | dia2dimlem4.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑇) | |
| 9 | dia2dimlem4.p | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 10 | 9 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 11 | dia2dimlem4.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 12 | dia2dimlem4.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 11, 12, 4, 5 | ltrncoval 40134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐷‘(𝐺‘𝑃))) |
| 14 | 1, 2, 3, 10, 13 | syl121anc 1377 | . . 3 ⊢ (𝜑 → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐷‘(𝐺‘𝑃))) |
| 15 | dia2dimlem4.gv | . . . 4 ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) | |
| 16 | 15 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐺‘𝑃)) = (𝐷‘𝑄)) |
| 17 | dia2dimlem4.dv | . . 3 ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) | |
| 18 | 14, 16, 17 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐹‘𝑃)) |
| 19 | 11, 12, 4, 5 | cdlemd 40196 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐷 ∘ 𝐺) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐷 ∘ 𝐺)‘𝑃) = (𝐹‘𝑃)) → (𝐷 ∘ 𝐺) = 𝐹) |
| 20 | 1, 7, 8, 9, 18, 19 | syl311anc 1386 | 1 ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ∘ ccom 5623 ‘cfv 6482 lecple 17168 Atomscatm 39252 HLchlt 39339 LHypclh 39973 LTrncltrn 40090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-riotaBAD 38942 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-undef 8206 df-map 8755 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39165 df-ol 39167 df-oml 39168 df-covers 39255 df-ats 39256 df-atl 39287 df-cvlat 39311 df-hlat 39340 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 |
| This theorem is referenced by: dia2dimlem5 41057 |
| Copyright terms: Public domain | W3C validator |