Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia2dimlem4 | Structured version Visualization version GIF version |
Description: Lemma for dia2dim 39079. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
Ref | Expression |
---|---|
dia2dimlem4.l | ⊢ ≤ = (le‘𝐾) |
dia2dimlem4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dia2dimlem4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia2dimlem4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dia2dimlem4.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dia2dimlem4.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
dia2dimlem4.f | ⊢ (𝜑 → 𝐹 ∈ 𝑇) |
dia2dimlem4.g | ⊢ (𝜑 → 𝐺 ∈ 𝑇) |
dia2dimlem4.gv | ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) |
dia2dimlem4.d | ⊢ (𝜑 → 𝐷 ∈ 𝑇) |
dia2dimlem4.dv | ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) |
Ref | Expression |
---|---|
dia2dimlem4 | ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem4.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dia2dimlem4.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑇) | |
3 | dia2dimlem4.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑇) | |
4 | dia2dimlem4.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dia2dimlem4.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 4, 5 | ltrnco 38721 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐷 ∘ 𝐺) ∈ 𝑇) |
7 | 1, 2, 3, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝐷 ∘ 𝐺) ∈ 𝑇) |
8 | dia2dimlem4.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑇) | |
9 | dia2dimlem4.p | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
10 | 9 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
11 | dia2dimlem4.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
12 | dia2dimlem4.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
13 | 11, 12, 4, 5 | ltrncoval 38147 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐷‘(𝐺‘𝑃))) |
14 | 1, 2, 3, 10, 13 | syl121anc 1374 | . . 3 ⊢ (𝜑 → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐷‘(𝐺‘𝑃))) |
15 | dia2dimlem4.gv | . . . 4 ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) | |
16 | 15 | fveq2d 6773 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐺‘𝑃)) = (𝐷‘𝑄)) |
17 | dia2dimlem4.dv | . . 3 ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) | |
18 | 14, 16, 17 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐹‘𝑃)) |
19 | 11, 12, 4, 5 | cdlemd 38209 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐷 ∘ 𝐺) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐷 ∘ 𝐺)‘𝑃) = (𝐹‘𝑃)) → (𝐷 ∘ 𝐺) = 𝐹) |
20 | 1, 7, 8, 9, 18, 19 | syl311anc 1383 | 1 ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ∘ ccom 5593 ‘cfv 6431 lecple 16959 Atomscatm 37265 HLchlt 37352 LHypclh 37986 LTrncltrn 38103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-riotaBAD 36955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7818 df-2nd 7819 df-undef 8074 df-map 8592 df-proset 18003 df-poset 18021 df-plt 18038 df-lub 18054 df-glb 18055 df-join 18056 df-meet 18057 df-p0 18133 df-p1 18134 df-lat 18140 df-clat 18207 df-oposet 37178 df-ol 37180 df-oml 37181 df-covers 37268 df-ats 37269 df-atl 37300 df-cvlat 37324 df-hlat 37353 df-llines 37500 df-lplanes 37501 df-lvols 37502 df-lines 37503 df-psubsp 37505 df-pmap 37506 df-padd 37798 df-lhyp 37990 df-laut 37991 df-ldil 38106 df-ltrn 38107 df-trl 38161 |
This theorem is referenced by: dia2dimlem5 39070 |
Copyright terms: Public domain | W3C validator |