Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia2dimlem4 | Structured version Visualization version GIF version |
Description: Lemma for dia2dim 39091. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
Ref | Expression |
---|---|
dia2dimlem4.l | ⊢ ≤ = (le‘𝐾) |
dia2dimlem4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dia2dimlem4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia2dimlem4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dia2dimlem4.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dia2dimlem4.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
dia2dimlem4.f | ⊢ (𝜑 → 𝐹 ∈ 𝑇) |
dia2dimlem4.g | ⊢ (𝜑 → 𝐺 ∈ 𝑇) |
dia2dimlem4.gv | ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) |
dia2dimlem4.d | ⊢ (𝜑 → 𝐷 ∈ 𝑇) |
dia2dimlem4.dv | ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) |
Ref | Expression |
---|---|
dia2dimlem4 | ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem4.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dia2dimlem4.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑇) | |
3 | dia2dimlem4.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑇) | |
4 | dia2dimlem4.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dia2dimlem4.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 4, 5 | ltrnco 38733 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐷 ∘ 𝐺) ∈ 𝑇) |
7 | 1, 2, 3, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝐷 ∘ 𝐺) ∈ 𝑇) |
8 | dia2dimlem4.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑇) | |
9 | dia2dimlem4.p | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
10 | 9 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
11 | dia2dimlem4.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
12 | dia2dimlem4.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
13 | 11, 12, 4, 5 | ltrncoval 38159 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐷‘(𝐺‘𝑃))) |
14 | 1, 2, 3, 10, 13 | syl121anc 1374 | . . 3 ⊢ (𝜑 → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐷‘(𝐺‘𝑃))) |
15 | dia2dimlem4.gv | . . . 4 ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) | |
16 | 15 | fveq2d 6778 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐺‘𝑃)) = (𝐷‘𝑄)) |
17 | dia2dimlem4.dv | . . 3 ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) | |
18 | 14, 16, 17 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((𝐷 ∘ 𝐺)‘𝑃) = (𝐹‘𝑃)) |
19 | 11, 12, 4, 5 | cdlemd 38221 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐷 ∘ 𝐺) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐷 ∘ 𝐺)‘𝑃) = (𝐹‘𝑃)) → (𝐷 ∘ 𝐺) = 𝐹) |
20 | 1, 7, 8, 9, 18, 19 | syl311anc 1383 | 1 ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ∘ ccom 5593 ‘cfv 6433 lecple 16969 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-undef 8089 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 |
This theorem is referenced by: dia2dimlem5 39082 |
Copyright terms: Public domain | W3C validator |