Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem4 Structured version   Visualization version   GIF version

Theorem dia2dimlem4 41050
Description: Lemma for dia2dim 41060. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem4.l = (le‘𝐾)
dia2dimlem4.a 𝐴 = (Atoms‘𝐾)
dia2dimlem4.h 𝐻 = (LHyp‘𝐾)
dia2dimlem4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem4.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem4.f (𝜑𝐹𝑇)
dia2dimlem4.g (𝜑𝐺𝑇)
dia2dimlem4.gv (𝜑 → (𝐺𝑃) = 𝑄)
dia2dimlem4.d (𝜑𝐷𝑇)
dia2dimlem4.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem4 (𝜑 → (𝐷𝐺) = 𝐹)

Proof of Theorem dia2dimlem4
StepHypRef Expression
1 dia2dimlem4.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dia2dimlem4.d . . 3 (𝜑𝐷𝑇)
3 dia2dimlem4.g . . 3 (𝜑𝐺𝑇)
4 dia2dimlem4.h . . . 4 𝐻 = (LHyp‘𝐾)
5 dia2dimlem4.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrnco 40702 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇𝐺𝑇) → (𝐷𝐺) ∈ 𝑇)
71, 2, 3, 6syl3anc 1370 . 2 (𝜑 → (𝐷𝐺) ∈ 𝑇)
8 dia2dimlem4.f . 2 (𝜑𝐹𝑇)
9 dia2dimlem4.p . 2 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
109simpld 494 . . . 4 (𝜑𝑃𝐴)
11 dia2dimlem4.l . . . . 5 = (le‘𝐾)
12 dia2dimlem4.a . . . . 5 𝐴 = (Atoms‘𝐾)
1311, 12, 4, 5ltrncoval 40128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
141, 2, 3, 10, 13syl121anc 1374 . . 3 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
15 dia2dimlem4.gv . . . 4 (𝜑 → (𝐺𝑃) = 𝑄)
1615fveq2d 6911 . . 3 (𝜑 → (𝐷‘(𝐺𝑃)) = (𝐷𝑄))
17 dia2dimlem4.dv . . 3 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
1814, 16, 173eqtrd 2779 . 2 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐹𝑃))
1911, 12, 4, 5cdlemd 40190 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝐺) ∈ 𝑇𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐷𝐺)‘𝑃) = (𝐹𝑃)) → (𝐷𝐺) = 𝐹)
201, 7, 8, 9, 18, 19syl311anc 1383 1 (𝜑 → (𝐷𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  ccom 5693  cfv 6563  lecple 17305  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-undef 8297  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  dia2dimlem5  41051
  Copyright terms: Public domain W3C validator