Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem4 Structured version   Visualization version   GIF version

Theorem dia2dimlem4 41176
Description: Lemma for dia2dim 41186. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem4.l = (le‘𝐾)
dia2dimlem4.a 𝐴 = (Atoms‘𝐾)
dia2dimlem4.h 𝐻 = (LHyp‘𝐾)
dia2dimlem4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem4.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem4.f (𝜑𝐹𝑇)
dia2dimlem4.g (𝜑𝐺𝑇)
dia2dimlem4.gv (𝜑 → (𝐺𝑃) = 𝑄)
dia2dimlem4.d (𝜑𝐷𝑇)
dia2dimlem4.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem4 (𝜑 → (𝐷𝐺) = 𝐹)

Proof of Theorem dia2dimlem4
StepHypRef Expression
1 dia2dimlem4.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dia2dimlem4.d . . 3 (𝜑𝐷𝑇)
3 dia2dimlem4.g . . 3 (𝜑𝐺𝑇)
4 dia2dimlem4.h . . . 4 𝐻 = (LHyp‘𝐾)
5 dia2dimlem4.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrnco 40828 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇𝐺𝑇) → (𝐷𝐺) ∈ 𝑇)
71, 2, 3, 6syl3anc 1373 . 2 (𝜑 → (𝐷𝐺) ∈ 𝑇)
8 dia2dimlem4.f . 2 (𝜑𝐹𝑇)
9 dia2dimlem4.p . 2 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
109simpld 494 . . . 4 (𝜑𝑃𝐴)
11 dia2dimlem4.l . . . . 5 = (le‘𝐾)
12 dia2dimlem4.a . . . . 5 𝐴 = (Atoms‘𝐾)
1311, 12, 4, 5ltrncoval 40254 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
141, 2, 3, 10, 13syl121anc 1377 . . 3 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
15 dia2dimlem4.gv . . . 4 (𝜑 → (𝐺𝑃) = 𝑄)
1615fveq2d 6826 . . 3 (𝜑 → (𝐷‘(𝐺𝑃)) = (𝐷𝑄))
17 dia2dimlem4.dv . . 3 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
1814, 16, 173eqtrd 2770 . 2 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐹𝑃))
1911, 12, 4, 5cdlemd 40316 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝐺) ∈ 𝑇𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐷𝐺)‘𝑃) = (𝐹𝑃)) → (𝐷𝐺) = 𝐹)
201, 7, 8, 9, 18, 19syl311anc 1386 1 (𝜑 → (𝐷𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  ccom 5618  cfv 6481  lecple 17168  Atomscatm 39372  HLchlt 39459  LHypclh 40093  LTrncltrn 40210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268
This theorem is referenced by:  dia2dimlem5  41177
  Copyright terms: Public domain W3C validator