| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk56w | Structured version Visualization version GIF version | ||
| Description: Use a fixed element to eliminate 𝑃 in cdlemk56 40938. (Contributed by NM, 1-Aug-2013.) |
| Ref | Expression |
|---|---|
| cdlemk6.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemk6.j | ⊢ ∨ = (join‘𝐾) |
| cdlemk6.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemk6.o | ⊢ ⊥ = (oc‘𝐾) |
| cdlemk6.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemk6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemk6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemk6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemk6.p | ⊢ 𝑃 = ( ⊥ ‘𝑊) |
| cdlemk6.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
| cdlemk6.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| cdlemk6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
| cdlemk6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
| cdlemk6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemk56w | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2l 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝐹 ∈ 𝑇) | |
| 3 | simp2r 1201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑁 ∈ 𝑇) | |
| 4 | simp3 1138 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑅‘𝐹) = (𝑅‘𝑁)) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | cdlemk6.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | cdlemk6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | cdlemk6.p | . . . . . 6 ⊢ 𝑃 = ( ⊥ ‘𝑊) | |
| 9 | cdlemk6.o | . . . . . . 7 ⊢ ⊥ = (oc‘𝐾) | |
| 10 | 9 | fveq1i 6841 | . . . . . 6 ⊢ ( ⊥ ‘𝑊) = ((oc‘𝐾)‘𝑊) |
| 11 | 8, 10 | eqtri 2752 | . . . . 5 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 12 | 5, 6, 7, 11 | lhpocnel2 39986 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
| 13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
| 14 | cdlemk6.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | cdlemk6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 16 | cdlemk6.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 17 | cdlemk6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 18 | cdlemk6.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 19 | cdlemk6.z | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
| 20 | cdlemk6.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
| 21 | cdlemk6.x | . . . 4 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
| 22 | cdlemk6.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
| 23 | cdlemk6.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 24 | 14, 5, 15, 16, 6, 7, 17, 18, 19, 20, 21, 22, 23 | cdlemk56 40938 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) → 𝑈 ∈ 𝐸) |
| 25 | 1, 2, 3, 4, 13, 24 | syl311anc 1386 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑈 ∈ 𝐸) |
| 26 | 14, 15, 16, 9, 6, 7, 17, 18, 8, 19, 20, 21, 22 | cdlemk19w 40939 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈‘𝐹) = 𝑁) |
| 27 | 25, 26 | jca 511 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 I cid 5525 ◡ccnv 5630 ↾ cres 5633 ∘ ccom 5635 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Basecbs 17155 lecple 17203 occoc 17204 joincjn 18248 meetcmee 18249 Atomscatm 39229 HLchlt 39316 LHypclh 39951 LTrncltrn 40068 trLctrl 40125 TEndoctendo 40719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-undef 8229 df-map 8778 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tendo 40722 |
| This theorem is referenced by: cdlemk 40941 cdleml6 40948 |
| Copyright terms: Public domain | W3C validator |