Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk56w | Structured version Visualization version GIF version |
Description: Use a fixed element to eliminate 𝑃 in cdlemk56 39027. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
cdlemk6.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk6.j | ⊢ ∨ = (join‘𝐾) |
cdlemk6.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk6.o | ⊢ ⊥ = (oc‘𝐾) |
cdlemk6.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk6.p | ⊢ 𝑃 = ( ⊥ ‘𝑊) |
cdlemk6.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk6.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
cdlemk6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
cdlemk6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemk56w | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2l 1199 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝐹 ∈ 𝑇) | |
3 | simp2r 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑁 ∈ 𝑇) | |
4 | simp3 1138 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑅‘𝐹) = (𝑅‘𝑁)) | |
5 | eqid 2736 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | cdlemk6.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | cdlemk6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | cdlemk6.p | . . . . . 6 ⊢ 𝑃 = ( ⊥ ‘𝑊) | |
9 | cdlemk6.o | . . . . . . 7 ⊢ ⊥ = (oc‘𝐾) | |
10 | 9 | fveq1i 6805 | . . . . . 6 ⊢ ( ⊥ ‘𝑊) = ((oc‘𝐾)‘𝑊) |
11 | 8, 10 | eqtri 2764 | . . . . 5 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
12 | 5, 6, 7, 11 | lhpocnel2 38075 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
14 | cdlemk6.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
15 | cdlemk6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
16 | cdlemk6.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
17 | cdlemk6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | cdlemk6.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
19 | cdlemk6.z | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
20 | cdlemk6.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
21 | cdlemk6.x | . . . 4 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
22 | cdlemk6.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
23 | cdlemk6.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
24 | 14, 5, 15, 16, 6, 7, 17, 18, 19, 20, 21, 22, 23 | cdlemk56 39027 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) → 𝑈 ∈ 𝐸) |
25 | 1, 2, 3, 4, 13, 24 | syl311anc 1384 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑈 ∈ 𝐸) |
26 | 14, 15, 16, 9, 6, 7, 17, 18, 8, 19, 20, 21, 22 | cdlemk19w 39028 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈‘𝐹) = 𝑁) |
27 | 25, 26 | jca 513 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ifcif 4465 class class class wbr 5081 ↦ cmpt 5164 I cid 5499 ◡ccnv 5599 ↾ cres 5602 ∘ ccom 5604 ‘cfv 6458 ℩crio 7263 (class class class)co 7307 Basecbs 16957 lecple 17014 occoc 17015 joincjn 18074 meetcmee 18075 Atomscatm 37319 HLchlt 37406 LHypclh 38040 LTrncltrn 38157 trLctrl 38214 TEndoctendo 38808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-riotaBAD 37009 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-undef 8120 df-map 8648 df-proset 18058 df-poset 18076 df-plt 18093 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-p0 18188 df-p1 18189 df-lat 18195 df-clat 18262 df-oposet 37232 df-ol 37234 df-oml 37235 df-covers 37322 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 df-llines 37554 df-lplanes 37555 df-lvols 37556 df-lines 37557 df-psubsp 37559 df-pmap 37560 df-padd 37852 df-lhyp 38044 df-laut 38045 df-ldil 38160 df-ltrn 38161 df-trl 38215 df-tendo 38811 |
This theorem is referenced by: cdlemk 39030 cdleml6 39037 |
Copyright terms: Public domain | W3C validator |