| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk56w | Structured version Visualization version GIF version | ||
| Description: Use a fixed element to eliminate 𝑃 in cdlemk56 41080. (Contributed by NM, 1-Aug-2013.) |
| Ref | Expression |
|---|---|
| cdlemk6.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemk6.j | ⊢ ∨ = (join‘𝐾) |
| cdlemk6.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemk6.o | ⊢ ⊥ = (oc‘𝐾) |
| cdlemk6.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemk6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemk6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemk6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemk6.p | ⊢ 𝑃 = ( ⊥ ‘𝑊) |
| cdlemk6.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
| cdlemk6.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| cdlemk6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
| cdlemk6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
| cdlemk6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemk56w | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2l 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝐹 ∈ 𝑇) | |
| 3 | simp2r 1201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑁 ∈ 𝑇) | |
| 4 | simp3 1138 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑅‘𝐹) = (𝑅‘𝑁)) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | cdlemk6.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | cdlemk6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | cdlemk6.p | . . . . . 6 ⊢ 𝑃 = ( ⊥ ‘𝑊) | |
| 9 | cdlemk6.o | . . . . . . 7 ⊢ ⊥ = (oc‘𝐾) | |
| 10 | 9 | fveq1i 6823 | . . . . . 6 ⊢ ( ⊥ ‘𝑊) = ((oc‘𝐾)‘𝑊) |
| 11 | 8, 10 | eqtri 2754 | . . . . 5 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 12 | 5, 6, 7, 11 | lhpocnel2 40128 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
| 13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
| 14 | cdlemk6.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | cdlemk6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 16 | cdlemk6.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 17 | cdlemk6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 18 | cdlemk6.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 19 | cdlemk6.z | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
| 20 | cdlemk6.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
| 21 | cdlemk6.x | . . . 4 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
| 22 | cdlemk6.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
| 23 | cdlemk6.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 24 | 14, 5, 15, 16, 6, 7, 17, 18, 19, 20, 21, 22, 23 | cdlemk56 41080 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) → 𝑈 ∈ 𝐸) |
| 25 | 1, 2, 3, 4, 13, 24 | syl311anc 1386 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑈 ∈ 𝐸) |
| 26 | 14, 15, 16, 9, 6, 7, 17, 18, 8, 19, 20, 21, 22 | cdlemk19w 41081 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈‘𝐹) = 𝑁) |
| 27 | 25, 26 | jca 511 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 I cid 5508 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 occoc 17169 joincjn 18217 meetcmee 18218 Atomscatm 39372 HLchlt 39459 LHypclh 40093 LTrncltrn 40210 trLctrl 40267 TEndoctendo 40861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tendo 40864 |
| This theorem is referenced by: cdlemk 41083 cdleml6 41090 |
| Copyright terms: Public domain | W3C validator |