Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0b Structured version   Visualization version   GIF version

Theorem itsclinecirc0b 44781
Description: The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclinecirc0b.i 𝐼 = {1, 2}
itsclinecirc0b.e 𝐸 = (ℝ^‘𝐼)
itsclinecirc0b.p 𝑃 = (ℝ ↑m 𝐼)
itsclinecirc0b.s 𝑆 = (Sphere‘𝐸)
itsclinecirc0b.0 0 = (𝐼 × {0})
itsclinecirc0b.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclinecirc0b.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0b.l 𝐿 = (LineM𝐸)
itsclinecirc0b.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
itsclinecirc0b.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
itsclinecirc0b.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
itsclinecirc0b (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))

Proof of Theorem itsclinecirc0b
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itsclinecirc0b.i . . . . . . 7 𝐼 = {1, 2}
2 itsclinecirc0b.e . . . . . . 7 𝐸 = (ℝ^‘𝐼)
3 itsclinecirc0b.p . . . . . . 7 𝑃 = (ℝ ↑m 𝐼)
4 itsclinecirc0b.l . . . . . . 7 𝐿 = (LineM𝐸)
5 itsclinecirc0b.b . . . . . . 7 𝐵 = ((𝑌‘1) − (𝑋‘1))
6 eqid 2821 . . . . . . 7 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
7 itsclinecirc0b.c . . . . . . 7 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest 44749 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
98adantr 483 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
101, 3rrx2pxel 44718 . . . . . . . . . . . . . . . 16 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
1110adantl 484 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℝ)
121, 3rrx2pxel 44718 . . . . . . . . . . . . . . . 16 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1312adantr 483 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℝ)
1411, 13resubcld 11068 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
155, 14eqeltrid 2917 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → 𝐵 ∈ ℝ)
16153adant3 1128 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
1716ad2antrr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
181, 3rrx2pyel 44719 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
1918adantl 484 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
2017, 19remulcld 10671 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
2120recnd 10669 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
221, 3rrx2pyel 44719 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
2322adantl 484 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℝ)
241, 3rrx2pyel 44719 . . . . . . . . . . . . . . 15 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
2524adantr 483 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℝ)
2623, 25resubcld 11068 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
27263adant3 1128 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
2827ad2antrr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
291, 3rrx2pxel 44718 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
3029adantl 484 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
3128, 30remulcld 10671 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ)
3231recnd 10669 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
3325, 11remulcld 10671 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
3413, 23remulcld 10671 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
3533, 34resubcld 11068 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
367, 35eqeltrid 2917 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℝ)
3736recnd 10669 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℂ)
38373adant3 1128 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℂ)
3938ad2antrr 724 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
4021, 32, 39subaddd 11015 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶 ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2))))
41 eqcom 2828 . . . . . . . 8 ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))
4240, 41syl6rbbr 292 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶))
43 itsclinecirc0b.a . . . . . . . . . . . . . . 15 𝐴 = ((𝑋‘2) − (𝑌‘2))
4425, 23resubcld 11068 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
4543, 44eqeltrid 2917 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → 𝐴 ∈ ℝ)
46453adant3 1128 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
4746ad2antrr 724 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
4847, 30remulcld 10671 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
4948recnd 10669 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
5049, 21addcomd 10842 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
51233adant3 1128 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
5251ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
5352recnd 10669 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
54253adant3 1128 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
5554ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
5655recnd 10669 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
5753, 56negsubdi2d 11013 . . . . . . . . . . . . 13 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2)))
5857, 43syl6reqr 2875 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2)))
5958oveq1d 7171 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
6026recnd 10669 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
61603adant3 1128 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6261ad2antrr 724 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6330recnd 10669 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
6462, 63mulneg1d 11093 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
6559, 64eqtr2d 2857 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐴 · (𝑝‘1)))
6665oveq2d 7172 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
6721, 32negsubd 11003 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
6850, 66, 673eqtr2rd 2863 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))))
6968eqeq1d 2823 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
7042, 69bitrd 281 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
7170rabbidva 3478 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
729, 71eqtrd 2856 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
7372eleq2d 2898 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))
7473anbi2d 630 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})))
7546adantr 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
7616adantr 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
77363adant3 1128 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
7877adantr 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
791, 3, 5, 43rrx2pnedifcoorneorr 44724 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
8079orcomd 867 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
8180adantr 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
82 simpr 487 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷))
83 itsclinecirc0b.s . . . 4 𝑆 = (Sphere‘𝐸)
84 itsclinecirc0b.0 . . . 4 0 = (𝐼 × {0})
85 itsclinecirc0b.q . . . 4 𝑄 = ((𝐴↑2) + (𝐵↑2))
86 itsclinecirc0b.d . . . 4 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
87 eqid 2821 . . . 4 {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
881, 2, 3, 83, 84, 85, 86, 87itsclc0b 44779 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
8975, 76, 78, 81, 82, 88syl311anc 1380 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
9074, 89bitrd 281 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {crab 3142  {csn 4567  {cpr 4569   class class class wbr 5066   × cxp 5553  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  +crp 12390  cexp 13430  csqrt 14592  ℝ^crrx 23986  LineMcline 44734  Spherecsph 44735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-xmet 20538  df-met 20539  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-nm 23192  df-tng 23194  df-tcph 23773  df-rrx 23988  df-ehl 23989  df-line 44736  df-sph 44737
This theorem is referenced by:  itsclinecirc0in  44782
  Copyright terms: Public domain W3C validator