| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | itsclinecirc0b.i | . . . . . . 7
⊢ 𝐼 = {1, 2} | 
| 2 |  | itsclinecirc0b.e | . . . . . . 7
⊢ 𝐸 = (ℝ^‘𝐼) | 
| 3 |  | itsclinecirc0b.p | . . . . . . 7
⊢ 𝑃 = (ℝ ↑m
𝐼) | 
| 4 |  | itsclinecirc0b.l | . . . . . . 7
⊢ 𝐿 = (LineM‘𝐸) | 
| 5 |  | itsclinecirc0b.b | . . . . . . 7
⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) | 
| 6 |  | eqid 2736 | . . . . . . 7
⊢ ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2)) | 
| 7 |  | itsclinecirc0b.c | . . . . . . 7
⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | rrx2linest 48668 | . . . . . 6
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)}) | 
| 9 | 8 | adantr 480 | . . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)}) | 
| 10 |  | eqcom 2743 | . . . . . . . 8
⊢ ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2))) | 
| 11 | 1, 3 | rrx2pxel 48637 | . . . . . . . . . . . . . . . 16
⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) | 
| 12 | 11 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑌‘1) ∈ ℝ) | 
| 13 | 1, 3 | rrx2pxel 48637 | . . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) | 
| 14 | 13 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋‘1) ∈ ℝ) | 
| 15 | 12, 14 | resubcld 11692 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ) | 
| 16 | 5, 15 | eqeltrid 2844 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐵 ∈ ℝ) | 
| 17 | 16 | 3adant3 1132 | . . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝐵 ∈ ℝ) | 
| 18 | 17 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → 𝐵 ∈ ℝ) | 
| 19 | 1, 3 | rrx2pyel 48638 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) | 
| 20 | 19 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘2) ∈ ℝ) | 
| 21 | 18, 20 | remulcld 11292 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ) | 
| 22 | 21 | recnd 11290 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ) | 
| 23 | 1, 3 | rrx2pyel 48638 | . . . . . . . . . . . . . . 15
⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) | 
| 24 | 23 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑌‘2) ∈ ℝ) | 
| 25 | 1, 3 | rrx2pyel 48638 | . . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) | 
| 26 | 25 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋‘2) ∈ ℝ) | 
| 27 | 24, 26 | resubcld 11692 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ) | 
| 28 | 27 | 3adant3 1132 | . . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ) | 
| 29 | 28 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ) | 
| 30 | 1, 3 | rrx2pxel 48637 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) | 
| 31 | 30 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘1) ∈ ℝ) | 
| 32 | 29, 31 | remulcld 11292 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ) | 
| 33 | 32 | recnd 11290 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ) | 
| 34 | 26, 12 | remulcld 11292 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ) | 
| 35 | 14, 24 | remulcld 11292 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ) | 
| 36 | 34, 35 | resubcld 11692 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) | 
| 37 | 7, 36 | eqeltrid 2844 | . . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐶 ∈ ℝ) | 
| 38 | 37 | recnd 11290 | . . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐶 ∈ ℂ) | 
| 39 | 38 | 3adant3 1132 | . . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝐶 ∈ ℂ) | 
| 40 | 39 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → 𝐶 ∈ ℂ) | 
| 41 | 22, 33, 40 | subaddd 11639 | . . . . . . . 8
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶 ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))) | 
| 42 | 10, 41 | bitr4id 290 | . . . . . . 7
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶)) | 
| 43 |  | itsclinecirc0b.a | . . . . . . . . . . . . . . 15
⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) | 
| 44 | 26, 24 | resubcld 11692 | . . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ) | 
| 45 | 43, 44 | eqeltrid 2844 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐴 ∈ ℝ) | 
| 46 | 45 | 3adant3 1132 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ ℝ) | 
| 47 | 46 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → 𝐴 ∈ ℝ) | 
| 48 | 47, 31 | remulcld 11292 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ) | 
| 49 | 48 | recnd 11290 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ) | 
| 50 | 49, 22 | addcomd 11464 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1)))) | 
| 51 | 24 | 3adant3 1132 | . . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑌‘2) ∈ ℝ) | 
| 52 | 51 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘2) ∈ ℝ) | 
| 53 | 52 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘2) ∈ ℂ) | 
| 54 | 26 | 3adant3 1132 | . . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋‘2) ∈ ℝ) | 
| 55 | 54 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘2) ∈ ℝ) | 
| 56 | 55 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘2) ∈ ℂ) | 
| 57 | 53, 56 | negsubdi2d 11637 | . . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2))) | 
| 58 | 43, 57 | eqtr4id 2795 | . . . . . . . . . . . 12
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2))) | 
| 59 | 58 | oveq1d 7447 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) | 
| 60 | 27 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ) | 
| 61 | 60 | 3adant3 1132 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ) | 
| 62 | 61 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ) | 
| 63 | 31 | recnd 11290 | . . . . . . . . . . . 12
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘1) ∈ ℂ) | 
| 64 | 62, 63 | mulneg1d 11717 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) | 
| 65 | 59, 64 | eqtr2d 2777 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐴 · (𝑝‘1))) | 
| 66 | 65 | oveq2d 7448 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1)))) | 
| 67 | 22, 33 | negsubd 11627 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))) | 
| 68 | 50, 66, 67 | 3eqtr2rd 2783 | . . . . . . . 8
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2)))) | 
| 69 | 68 | eqeq1d 2738 | . . . . . . 7
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → (((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶)) | 
| 70 | 42, 69 | bitrd 279 | . . . . . 6
⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) ∧ 𝑝 ∈ 𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶)) | 
| 71 | 70 | rabbidva 3442 | . . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → {𝑝 ∈ 𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) | 
| 72 | 9, 71 | eqtrd 2776 | . . . 4
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) | 
| 73 | 72 | eleq2d 2826 | . . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})) | 
| 74 | 73 | anbi2d 630 | . 2
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))) | 
| 75 | 46 | adantr 480 | . . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ∈
ℝ) | 
| 76 | 17 | adantr 480 | . . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ∈
ℝ) | 
| 77 | 37 | 3adant3 1132 | . . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝐶 ∈ ℝ) | 
| 78 | 77 | adantr 480 | . . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℝ) | 
| 79 | 1, 3, 5, 43 | rrx2pnedifcoorneorr 48643 | . . . . 5
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0)) | 
| 80 | 79 | orcomd 871 | . . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) | 
| 81 | 80 | adantr 480 | . . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) | 
| 82 |  | simpr 484 | . . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷)) | 
| 83 |  | itsclinecirc0b.s | . . . 4
⊢ 𝑆 = (Sphere‘𝐸) | 
| 84 |  | itsclinecirc0b.0 | . . . 4
⊢  0 = (𝐼 × {0}) | 
| 85 |  | itsclinecirc0b.q | . . . 4
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | 
| 86 |  | itsclinecirc0b.d | . . . 4
⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) | 
| 87 |  | eqid 2736 | . . . 4
⊢ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} | 
| 88 | 1, 2, 3, 83, 84, 85, 86, 87 | itsclc0b 48698 | . . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) ↔ (𝑍 ∈ 𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) | 
| 89 | 75, 76, 78, 81, 82, 88 | syl311anc 1385 | . 2
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) ↔ (𝑍 ∈ 𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) | 
| 90 | 74, 89 | bitrd 279 | 1
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ 𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) |