Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0b Structured version   Visualization version   GIF version

Theorem itsclinecirc0b 48508
Description: The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclinecirc0b.i 𝐼 = {1, 2}
itsclinecirc0b.e 𝐸 = (ℝ^‘𝐼)
itsclinecirc0b.p 𝑃 = (ℝ ↑m 𝐼)
itsclinecirc0b.s 𝑆 = (Sphere‘𝐸)
itsclinecirc0b.0 0 = (𝐼 × {0})
itsclinecirc0b.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclinecirc0b.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0b.l 𝐿 = (LineM𝐸)
itsclinecirc0b.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
itsclinecirc0b.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
itsclinecirc0b.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
itsclinecirc0b (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))

Proof of Theorem itsclinecirc0b
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itsclinecirc0b.i . . . . . . 7 𝐼 = {1, 2}
2 itsclinecirc0b.e . . . . . . 7 𝐸 = (ℝ^‘𝐼)
3 itsclinecirc0b.p . . . . . . 7 𝑃 = (ℝ ↑m 𝐼)
4 itsclinecirc0b.l . . . . . . 7 𝐿 = (LineM𝐸)
5 itsclinecirc0b.b . . . . . . 7 𝐵 = ((𝑌‘1) − (𝑋‘1))
6 eqid 2740 . . . . . . 7 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
7 itsclinecirc0b.c . . . . . . 7 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest 48476 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
98adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
10 eqcom 2747 . . . . . . . 8 ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))
111, 3rrx2pxel 48445 . . . . . . . . . . . . . . . 16 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
1211adantl 481 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℝ)
131, 3rrx2pxel 48445 . . . . . . . . . . . . . . . 16 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1413adantr 480 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℝ)
1512, 14resubcld 11718 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
165, 15eqeltrid 2848 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → 𝐵 ∈ ℝ)
17163adant3 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
1817ad2antrr 725 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
191, 3rrx2pyel 48446 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
2019adantl 481 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
2118, 20remulcld 11320 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
2221recnd 11318 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
231, 3rrx2pyel 48446 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
2423adantl 481 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℝ)
251, 3rrx2pyel 48446 . . . . . . . . . . . . . . 15 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
2625adantr 480 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℝ)
2724, 26resubcld 11718 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
28273adant3 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
2928ad2antrr 725 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
301, 3rrx2pxel 48445 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
3130adantl 481 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
3229, 31remulcld 11320 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ)
3332recnd 11318 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
3426, 12remulcld 11320 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
3514, 24remulcld 11320 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
3634, 35resubcld 11718 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
377, 36eqeltrid 2848 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℝ)
3837recnd 11318 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℂ)
39383adant3 1132 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℂ)
4039ad2antrr 725 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
4122, 33, 40subaddd 11665 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶 ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2))))
4210, 41bitr4id 290 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶))
43 itsclinecirc0b.a . . . . . . . . . . . . . . 15 𝐴 = ((𝑋‘2) − (𝑌‘2))
4426, 24resubcld 11718 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
4543, 44eqeltrid 2848 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → 𝐴 ∈ ℝ)
46453adant3 1132 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
4746ad2antrr 725 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
4847, 31remulcld 11320 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
4948recnd 11318 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
5049, 22addcomd 11492 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
51243adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
5251ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
5352recnd 11318 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
54263adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
5554ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
5655recnd 11318 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
5753, 56negsubdi2d 11663 . . . . . . . . . . . . 13 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2)))
5843, 57eqtr4id 2799 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2)))
5958oveq1d 7463 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
6027recnd 11318 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
61603adant3 1132 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6261ad2antrr 725 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6331recnd 11318 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
6462, 63mulneg1d 11743 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
6559, 64eqtr2d 2781 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐴 · (𝑝‘1)))
6665oveq2d 7464 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
6722, 33negsubd 11653 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
6850, 66, 673eqtr2rd 2787 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))))
6968eqeq1d 2742 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → (((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
7042, 69bitrd 279 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
7170rabbidva 3450 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
729, 71eqtrd 2780 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
7372eleq2d 2830 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))
7473anbi2d 629 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})))
7546adantr 480 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
7617adantr 480 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
77373adant3 1132 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
7877adantr 480 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
791, 3, 5, 43rrx2pnedifcoorneorr 48451 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
8079orcomd 870 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
8180adantr 480 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
82 simpr 484 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷))
83 itsclinecirc0b.s . . . 4 𝑆 = (Sphere‘𝐸)
84 itsclinecirc0b.0 . . . 4 0 = (𝐼 × {0})
85 itsclinecirc0b.q . . . 4 𝑄 = ((𝐴↑2) + (𝐵↑2))
86 itsclinecirc0b.d . . . 4 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
87 eqid 2740 . . . 4 {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
881, 2, 3, 83, 84, 85, 86, 87itsclc0b 48506 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
8975, 76, 78, 81, 82, 88syl311anc 1384 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
9074, 89bitrd 279 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  {csn 4648  {cpr 4650   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  +crp 13057  cexp 14112  csqrt 15282  ℝ^crrx 25436  LineMcline 48461  Spherecsph 48462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-xmet 21380  df-met 21381  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-nm 24616  df-tng 24618  df-tcph 25222  df-rrx 25438  df-ehl 25439  df-line 48463  df-sph 48464
This theorem is referenced by:  itsclinecirc0in  48509
  Copyright terms: Public domain W3C validator