Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemd | Structured version Visualization version GIF version |
Description: If two translations agree at any atom not under the fiducial co-atom 𝑊, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.) |
Ref | Expression |
---|---|
cdlemd.l | ⊢ ≤ = (le‘𝐾) |
cdlemd.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemd | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl11 1247 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simpl12 1248 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝐹 ∈ 𝑇) | |
3 | simpl13 1249 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝐺 ∈ 𝑇) | |
4 | 2, 3 | jca 512 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
5 | simpr 485 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
6 | simpl2 1191 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
7 | simpl3 1192 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹‘𝑃) = (𝐺‘𝑃)) | |
8 | cdlemd.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | eqid 2738 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
10 | cdlemd.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | cdlemd.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | cdlemd.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
13 | 8, 9, 10, 11, 12 | cdlemd9 38220 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑞 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (𝐹‘𝑞) = (𝐺‘𝑞)) |
14 | 1, 4, 5, 6, 7, 13 | syl311anc 1383 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹‘𝑞) = (𝐺‘𝑞)) |
15 | 14 | ralrimiva 3103 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → ∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞)) |
16 | 10, 11, 12 | ltrneq2 38162 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞) ↔ 𝐹 = 𝐺)) |
17 | 16 | 3ad2ant1 1132 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞) ↔ 𝐹 = 𝐺)) |
18 | 15, 17 | mpbid 231 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ‘cfv 6433 lecple 16969 joincjn 18029 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 |
This theorem is referenced by: ltrneq3 38222 cdleme 38574 cdlemg1a 38584 ltrniotavalbN 38598 cdlemg44 38747 cdlemk19 38883 cdlemk27-3 38921 cdlemk33N 38923 cdlemk34 38924 cdlemk53a 38969 cdlemk19u 38984 dia2dimlem4 39081 dih1dimatlem0 39342 |
Copyright terms: Public domain | W3C validator |