Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd Structured version   Visualization version   GIF version

Theorem cdlemd 40196
Description: If two translations agree at any atom not under the fiducial co-atom 𝑊, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
cdlemd.l = (le‘𝐾)
cdlemd.a 𝐴 = (Atoms‘𝐾)
cdlemd.h 𝐻 = (LHyp‘𝐾)
cdlemd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemd ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐹 = 𝐺)

Proof of Theorem cdlemd
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simpl11 1249 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl12 1250 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → 𝐹𝑇)
3 simpl13 1251 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → 𝐺𝑇)
42, 3jca 511 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → (𝐹𝑇𝐺𝑇))
5 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → 𝑞𝐴)
6 simpl2 1193 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
7 simpl3 1194 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → (𝐹𝑃) = (𝐺𝑃))
8 cdlemd.l . . . . 5 = (le‘𝐾)
9 eqid 2730 . . . . 5 (join‘𝐾) = (join‘𝐾)
10 cdlemd.a . . . . 5 𝐴 = (Atoms‘𝐾)
11 cdlemd.h . . . . 5 𝐻 = (LHyp‘𝐾)
12 cdlemd.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
138, 9, 10, 11, 12cdlemd9 40195 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑞𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝐹𝑞) = (𝐺𝑞))
141, 4, 5, 6, 7, 13syl311anc 1386 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ 𝑞𝐴) → (𝐹𝑞) = (𝐺𝑞))
1514ralrimiva 3126 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → ∀𝑞𝐴 (𝐹𝑞) = (𝐺𝑞))
1610, 11, 12ltrneq2 40137 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑞𝐴 (𝐹𝑞) = (𝐺𝑞) ↔ 𝐹 = 𝐺))
17163ad2ant1 1133 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → (∀𝑞𝐴 (𝐹𝑞) = (𝐺𝑞) ↔ 𝐹 = 𝐺))
1815, 17mpbid 232 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5109  cfv 6513  lecple 17233  joincjn 18278  Atomscatm 39251  HLchlt 39338  LHypclh 39973  LTrncltrn 40090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-llines 39487  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148
This theorem is referenced by:  ltrneq3  40197  cdleme  40549  cdlemg1a  40559  ltrniotavalbN  40573  cdlemg44  40722  cdlemk19  40858  cdlemk27-3  40896  cdlemk33N  40898  cdlemk34  40899  cdlemk53a  40944  cdlemk19u  40959  dia2dimlem4  41056  dih1dimatlem0  41317
  Copyright terms: Public domain W3C validator