Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemd | Structured version Visualization version GIF version |
Description: If two translations agree at any atom not under the fiducial co-atom 𝑊, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.) |
Ref | Expression |
---|---|
cdlemd.l | ⊢ ≤ = (le‘𝐾) |
cdlemd.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemd | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl11 1246 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simpl12 1247 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝐹 ∈ 𝑇) | |
3 | simpl13 1248 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝐺 ∈ 𝑇) | |
4 | 2, 3 | jca 516 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
5 | simpr 489 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
6 | simpl2 1190 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
7 | simpl3 1191 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹‘𝑃) = (𝐺‘𝑃)) | |
8 | cdlemd.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | eqid 2759 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
10 | cdlemd.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | cdlemd.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | cdlemd.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
13 | 8, 9, 10, 11, 12 | cdlemd9 37775 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑞 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (𝐹‘𝑞) = (𝐺‘𝑞)) |
14 | 1, 4, 5, 6, 7, 13 | syl311anc 1382 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹‘𝑞) = (𝐺‘𝑞)) |
15 | 14 | ralrimiva 3114 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → ∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞)) |
16 | 10, 11, 12 | ltrneq2 37717 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞) ↔ 𝐹 = 𝐺)) |
17 | 16 | 3ad2ant1 1131 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞) ↔ 𝐹 = 𝐺)) |
18 | 15, 17 | mpbid 235 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∀wral 3071 class class class wbr 5033 ‘cfv 6336 lecple 16623 joincjn 17613 Atomscatm 36832 HLchlt 36919 LHypclh 37553 LTrncltrn 37670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-map 8419 df-proset 17597 df-poset 17615 df-plt 17627 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-p0 17708 df-p1 17709 df-lat 17715 df-clat 17777 df-oposet 36745 df-ol 36747 df-oml 36748 df-covers 36835 df-ats 36836 df-atl 36867 df-cvlat 36891 df-hlat 36920 df-llines 37067 df-psubsp 37072 df-pmap 37073 df-padd 37365 df-lhyp 37557 df-laut 37558 df-ldil 37673 df-ltrn 37674 df-trl 37728 |
This theorem is referenced by: ltrneq3 37777 cdleme 38129 cdlemg1a 38139 ltrniotavalbN 38153 cdlemg44 38302 cdlemk19 38438 cdlemk27-3 38476 cdlemk33N 38478 cdlemk34 38479 cdlemk53a 38524 cdlemk19u 38539 dia2dimlem4 38636 dih1dimatlem0 38897 |
Copyright terms: Public domain | W3C validator |