| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemd | Structured version Visualization version GIF version | ||
| Description: If two translations agree at any atom not under the fiducial co-atom 𝑊, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdlemd.l | ⊢ ≤ = (le‘𝐾) |
| cdlemd.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemd | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl11 1249 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simpl12 1250 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝐹 ∈ 𝑇) | |
| 3 | simpl13 1251 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝐺 ∈ 𝑇) | |
| 4 | 2, 3 | jca 511 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
| 5 | simpr 484 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
| 6 | simpl2 1193 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 7 | simpl3 1194 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹‘𝑃) = (𝐺‘𝑃)) | |
| 8 | cdlemd.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 10 | cdlemd.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | cdlemd.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 12 | cdlemd.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 13 | 8, 9, 10, 11, 12 | cdlemd9 40244 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑞 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (𝐹‘𝑞) = (𝐺‘𝑞)) |
| 14 | 1, 4, 5, 6, 7, 13 | syl311anc 1386 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) ∧ 𝑞 ∈ 𝐴) → (𝐹‘𝑞) = (𝐺‘𝑞)) |
| 15 | 14 | ralrimiva 3124 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → ∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞)) |
| 16 | 10, 11, 12 | ltrneq2 40186 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞) ↔ 𝐹 = 𝐺)) |
| 17 | 16 | 3ad2ant1 1133 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (∀𝑞 ∈ 𝐴 (𝐹‘𝑞) = (𝐺‘𝑞) ↔ 𝐹 = 𝐺)) |
| 18 | 15, 17 | mpbid 232 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ‘cfv 6481 lecple 17165 joincjn 18214 Atomscatm 39301 HLchlt 39388 LHypclh 40022 LTrncltrn 40139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-clat 18402 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-llines 39536 df-psubsp 39541 df-pmap 39542 df-padd 39834 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 |
| This theorem is referenced by: ltrneq3 40246 cdleme 40598 cdlemg1a 40608 ltrniotavalbN 40622 cdlemg44 40771 cdlemk19 40907 cdlemk27-3 40945 cdlemk33N 40947 cdlemk34 40948 cdlemk53a 40993 cdlemk19u 41008 dia2dimlem4 41105 dih1dimatlem0 41366 |
| Copyright terms: Public domain | W3C validator |