Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0 Structured version   Visualization version   GIF version

Theorem itsclinecirc0 45126
Description: The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.)
Hypotheses
Ref Expression
itsclc0.i 𝐼 = {1, 2}
itsclc0.e 𝐸 = (ℝ^‘𝐼)
itsclc0.p 𝑃 = (ℝ ↑m 𝐼)
itsclc0.s 𝑆 = (Sphere‘𝐸)
itsclc0.0 0 = (𝐼 × {0})
itsclc0.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0.l 𝐿 = (LineM𝐸)
itsclinecirc0.a 𝐴 = ((𝑌‘2) − (𝑍‘2))
itsclinecirc0.b 𝐵 = ((𝑍‘1) − (𝑌‘1))
itsclinecirc0.c 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))
Assertion
Ref Expression
itsclinecirc0 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Proof of Theorem itsclinecirc0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itsclc0.i . . . . . 6 𝐼 = {1, 2}
2 itsclc0.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
3 itsclc0.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
4 itsclinecirc0.l . . . . . 6 𝐿 = (LineM𝐸)
5 itsclinecirc0.a . . . . . 6 𝐴 = ((𝑌‘2) − (𝑍‘2))
6 itsclinecirc0.b . . . . . 6 𝐵 = ((𝑍‘1) − (𝑌‘1))
7 itsclinecirc0.c . . . . . 6 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest2 45097 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌𝐿𝑍) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
98adantr 484 . . . 4 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑌𝐿𝑍) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
109eleq2d 2899 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))
1110anbi2d 631 . 2 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ↔ (𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})))
121, 3rrx2pyel 45065 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
13123ad2ant1 1130 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌‘2) ∈ ℝ)
141, 3rrx2pyel 45065 . . . . . . 7 (𝑍𝑃 → (𝑍‘2) ∈ ℝ)
15143ad2ant2 1131 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑍‘2) ∈ ℝ)
1613, 15resubcld 11057 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘2) − (𝑍‘2)) ∈ ℝ)
175, 16eqeltrid 2918 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐴 ∈ ℝ)
1817adantr 484 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
191, 3rrx2pxel 45064 . . . . . . 7 (𝑍𝑃 → (𝑍‘1) ∈ ℝ)
20193ad2ant2 1131 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑍‘1) ∈ ℝ)
211, 3rrx2pxel 45064 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
22213ad2ant1 1130 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌‘1) ∈ ℝ)
2320, 22resubcld 11057 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑍‘1) − (𝑌‘1)) ∈ ℝ)
246, 23eqeltrid 2918 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐵 ∈ ℝ)
2524adantr 484 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
2613, 20remulcld 10660 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘2) · (𝑍‘1)) ∈ ℝ)
2722, 15remulcld 10660 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘1) · (𝑍‘2)) ∈ ℝ)
2826, 27resubcld 11057 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ∈ ℝ)
297, 28eqeltrid 2918 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐶 ∈ ℝ)
3029adantr 484 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
311, 3, 6, 5rrx2pnedifcoorneorr 45070 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
3231orcomd 868 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
3332adantr 484 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
34 simpr 488 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷))
35 itsclc0.s . . . 4 𝑆 = (Sphere‘𝐸)
36 itsclc0.0 . . . 4 0 = (𝐼 × {0})
37 itsclc0.q . . . 4 𝑄 = ((𝐴↑2) + (𝐵↑2))
38 itsclc0.d . . . 4 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
39 eqid 2822 . . . 4 {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
401, 2, 3, 35, 36, 37, 38, 39itsclc0 45124 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4118, 25, 30, 33, 34, 40syl311anc 1381 . 2 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4211, 41sylbid 243 1 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2114  wne 3011  {crab 3134  {csn 4539  {cpr 4541   class class class wbr 5042   × cxp 5530  cfv 6334  (class class class)co 7140  m cmap 8393  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  cexp 13425  csqrt 14583  ℝ^crrx 23985  LineMcline 45080  Spherecsph 45081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-0g 16706  df-gsum 16707  df-prds 16712  df-pws 16714  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-ghm 18347  df-cntz 18438  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19495  df-field 19496  df-subrg 19524  df-staf 19607  df-srng 19608  df-lmod 19627  df-lss 19695  df-sra 19935  df-rgmod 19936  df-xmet 20082  df-met 20083  df-cnfld 20090  df-refld 20292  df-dsmm 20419  df-frlm 20434  df-nm 23187  df-tng 23189  df-tcph 23772  df-rrx 23987  df-ehl 23988  df-line 45082  df-sph 45083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator