Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itsclinecirc0 | Structured version Visualization version GIF version |
Description: The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.) |
Ref | Expression |
---|---|
itsclc0.i | ⊢ 𝐼 = {1, 2} |
itsclc0.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
itsclc0.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
itsclc0.s | ⊢ 𝑆 = (Sphere‘𝐸) |
itsclc0.0 | ⊢ 0 = (𝐼 × {0}) |
itsclc0.q | ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
itsclc0.d | ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
itsclinecirc0.l | ⊢ 𝐿 = (LineM‘𝐸) |
itsclinecirc0.a | ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) |
itsclinecirc0.b | ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) |
itsclinecirc0.c | ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) |
Ref | Expression |
---|---|
itsclinecirc0 | ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itsclc0.i | . . . . . 6 ⊢ 𝐼 = {1, 2} | |
2 | itsclc0.e | . . . . . 6 ⊢ 𝐸 = (ℝ^‘𝐼) | |
3 | itsclc0.p | . . . . . 6 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
4 | itsclinecirc0.l | . . . . . 6 ⊢ 𝐿 = (LineM‘𝐸) | |
5 | itsclinecirc0.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) | |
6 | itsclinecirc0.b | . . . . . 6 ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) | |
7 | itsclinecirc0.c | . . . . . 6 ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | rrx2linest2 45978 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
9 | 8 | adantr 480 | . . . 4 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
10 | 9 | eleq2d 2824 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})) |
11 | 10 | anbi2d 628 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ↔ (𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))) |
12 | 1, 3 | rrx2pyel 45946 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
13 | 12 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘2) ∈ ℝ) |
14 | 1, 3 | rrx2pyel 45946 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘2) ∈ ℝ) |
15 | 14 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘2) ∈ ℝ) |
16 | 13, 15 | resubcld 11333 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) − (𝑍‘2)) ∈ ℝ) |
17 | 5, 16 | eqeltrid 2843 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐴 ∈ ℝ) |
18 | 17 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ) |
19 | 1, 3 | rrx2pxel 45945 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘1) ∈ ℝ) |
20 | 19 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘1) ∈ ℝ) |
21 | 1, 3 | rrx2pxel 45945 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
22 | 21 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘1) ∈ ℝ) |
23 | 20, 22 | resubcld 11333 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑍‘1) − (𝑌‘1)) ∈ ℝ) |
24 | 6, 23 | eqeltrid 2843 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐵 ∈ ℝ) |
25 | 24 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ) |
26 | 13, 20 | remulcld 10936 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) · (𝑍‘1)) ∈ ℝ) |
27 | 22, 15 | remulcld 10936 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘1) · (𝑍‘2)) ∈ ℝ) |
28 | 26, 27 | resubcld 11333 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ∈ ℝ) |
29 | 7, 28 | eqeltrid 2843 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐶 ∈ ℝ) |
30 | 29 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ) |
31 | 1, 3, 6, 5 | rrx2pnedifcoorneorr 45951 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0)) |
32 | 31 | orcomd 867 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
33 | 32 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
34 | simpr 484 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) | |
35 | itsclc0.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
36 | itsclc0.0 | . . . 4 ⊢ 0 = (𝐼 × {0}) | |
37 | itsclc0.q | . . . 4 ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | |
38 | itsclc0.d | . . . 4 ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) | |
39 | eqid 2738 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} | |
40 | 1, 2, 3, 35, 36, 37, 38, 39 | itsclc0 46005 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
41 | 18, 25, 30, 33, 34, 40 | syl311anc 1382 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
42 | 11, 41 | sylbid 239 | 1 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 {csn 4558 {cpr 4560 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 ℝ+crp 12659 ↑cexp 13710 √csqrt 14872 ℝ^crrx 24452 LineMcline 45961 Spherecsph 45962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-field 19909 df-subrg 19937 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-xmet 20503 df-met 20504 df-cnfld 20511 df-refld 20722 df-dsmm 20849 df-frlm 20864 df-nm 23644 df-tng 23646 df-tcph 24238 df-rrx 24454 df-ehl 24455 df-line 45963 df-sph 45964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |