Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0 Structured version   Visualization version   GIF version

Theorem itsclinecirc0 46119
Description: The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.)
Hypotheses
Ref Expression
itsclc0.i 𝐼 = {1, 2}
itsclc0.e 𝐸 = (ℝ^‘𝐼)
itsclc0.p 𝑃 = (ℝ ↑m 𝐼)
itsclc0.s 𝑆 = (Sphere‘𝐸)
itsclc0.0 0 = (𝐼 × {0})
itsclc0.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0.l 𝐿 = (LineM𝐸)
itsclinecirc0.a 𝐴 = ((𝑌‘2) − (𝑍‘2))
itsclinecirc0.b 𝐵 = ((𝑍‘1) − (𝑌‘1))
itsclinecirc0.c 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))
Assertion
Ref Expression
itsclinecirc0 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Proof of Theorem itsclinecirc0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itsclc0.i . . . . . 6 𝐼 = {1, 2}
2 itsclc0.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
3 itsclc0.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
4 itsclinecirc0.l . . . . . 6 𝐿 = (LineM𝐸)
5 itsclinecirc0.a . . . . . 6 𝐴 = ((𝑌‘2) − (𝑍‘2))
6 itsclinecirc0.b . . . . . 6 𝐵 = ((𝑍‘1) − (𝑌‘1))
7 itsclinecirc0.c . . . . . 6 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest2 46090 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌𝐿𝑍) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
98adantr 481 . . . 4 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑌𝐿𝑍) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
109eleq2d 2824 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))
1110anbi2d 629 . 2 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ↔ (𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})))
121, 3rrx2pyel 46058 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
13123ad2ant1 1132 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌‘2) ∈ ℝ)
141, 3rrx2pyel 46058 . . . . . . 7 (𝑍𝑃 → (𝑍‘2) ∈ ℝ)
15143ad2ant2 1133 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑍‘2) ∈ ℝ)
1613, 15resubcld 11403 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘2) − (𝑍‘2)) ∈ ℝ)
175, 16eqeltrid 2843 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐴 ∈ ℝ)
1817adantr 481 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
191, 3rrx2pxel 46057 . . . . . . 7 (𝑍𝑃 → (𝑍‘1) ∈ ℝ)
20193ad2ant2 1133 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑍‘1) ∈ ℝ)
211, 3rrx2pxel 46057 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
22213ad2ant1 1132 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌‘1) ∈ ℝ)
2320, 22resubcld 11403 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑍‘1) − (𝑌‘1)) ∈ ℝ)
246, 23eqeltrid 2843 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐵 ∈ ℝ)
2524adantr 481 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
2613, 20remulcld 11005 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘2) · (𝑍‘1)) ∈ ℝ)
2722, 15remulcld 11005 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘1) · (𝑍‘2)) ∈ ℝ)
2826, 27resubcld 11403 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ∈ ℝ)
297, 28eqeltrid 2843 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐶 ∈ ℝ)
3029adantr 481 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
311, 3, 6, 5rrx2pnedifcoorneorr 46063 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
3231orcomd 868 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
3332adantr 481 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
34 simpr 485 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷))
35 itsclc0.s . . . 4 𝑆 = (Sphere‘𝐸)
36 itsclc0.0 . . . 4 0 = (𝐼 × {0})
37 itsclc0.q . . . 4 𝑄 = ((𝐴↑2) + (𝐵↑2))
38 itsclc0.d . . . 4 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
39 eqid 2738 . . . 4 {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
401, 2, 3, 35, 36, 37, 38, 39itsclc0 46117 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4118, 25, 30, 33, 34, 40syl311anc 1383 . 2 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4211, 41sylbid 239 1 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  {csn 4561  {cpr 4563   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  m cmap 8615  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  +crp 12730  cexp 13782  csqrt 14944  ℝ^crrx 24547  LineMcline 46073  Spherecsph 46074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-xmet 20590  df-met 20591  df-cnfld 20598  df-refld 20810  df-dsmm 20939  df-frlm 20954  df-nm 23738  df-tng 23740  df-tcph 24333  df-rrx 24549  df-ehl 24550  df-line 46075  df-sph 46076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator