| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itsclinecirc0 | Structured version Visualization version GIF version | ||
| Description: The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.) |
| Ref | Expression |
|---|---|
| itsclc0.i | ⊢ 𝐼 = {1, 2} |
| itsclc0.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| itsclc0.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| itsclc0.s | ⊢ 𝑆 = (Sphere‘𝐸) |
| itsclc0.0 | ⊢ 0 = (𝐼 × {0}) |
| itsclc0.q | ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
| itsclc0.d | ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
| itsclinecirc0.l | ⊢ 𝐿 = (LineM‘𝐸) |
| itsclinecirc0.a | ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) |
| itsclinecirc0.b | ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) |
| itsclinecirc0.c | ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) |
| Ref | Expression |
|---|---|
| itsclinecirc0 | ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itsclc0.i | . . . . . 6 ⊢ 𝐼 = {1, 2} | |
| 2 | itsclc0.e | . . . . . 6 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 3 | itsclc0.p | . . . . . 6 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 4 | itsclinecirc0.l | . . . . . 6 ⊢ 𝐿 = (LineM‘𝐸) | |
| 5 | itsclinecirc0.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) | |
| 6 | itsclinecirc0.b | . . . . . 6 ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) | |
| 7 | itsclinecirc0.c | . . . . . 6 ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | rrx2linest2 48726 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
| 10 | 9 | eleq2d 2814 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})) |
| 11 | 10 | anbi2d 630 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ↔ (𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))) |
| 12 | 1, 3 | rrx2pyel 48694 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 13 | 12 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘2) ∈ ℝ) |
| 14 | 1, 3 | rrx2pyel 48694 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘2) ∈ ℝ) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘2) ∈ ℝ) |
| 16 | 13, 15 | resubcld 11582 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) − (𝑍‘2)) ∈ ℝ) |
| 17 | 5, 16 | eqeltrid 2832 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐴 ∈ ℝ) |
| 18 | 17 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ) |
| 19 | 1, 3 | rrx2pxel 48693 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘1) ∈ ℝ) |
| 20 | 19 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘1) ∈ ℝ) |
| 21 | 1, 3 | rrx2pxel 48693 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘1) ∈ ℝ) |
| 23 | 20, 22 | resubcld 11582 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑍‘1) − (𝑌‘1)) ∈ ℝ) |
| 24 | 6, 23 | eqeltrid 2832 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐵 ∈ ℝ) |
| 25 | 24 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ) |
| 26 | 13, 20 | remulcld 11180 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) · (𝑍‘1)) ∈ ℝ) |
| 27 | 22, 15 | remulcld 11180 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘1) · (𝑍‘2)) ∈ ℝ) |
| 28 | 26, 27 | resubcld 11582 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ∈ ℝ) |
| 29 | 7, 28 | eqeltrid 2832 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐶 ∈ ℝ) |
| 30 | 29 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ) |
| 31 | 1, 3, 6, 5 | rrx2pnedifcoorneorr 48699 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0)) |
| 32 | 31 | orcomd 871 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| 33 | 32 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| 34 | simpr 484 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) | |
| 35 | itsclc0.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
| 36 | itsclc0.0 | . . . 4 ⊢ 0 = (𝐼 × {0}) | |
| 37 | itsclc0.q | . . . 4 ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | |
| 38 | itsclc0.d | . . . 4 ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) | |
| 39 | eqid 2729 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} | |
| 40 | 1, 2, 3, 35, 36, 37, 38, 39 | itsclc0 48753 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| 41 | 18, 25, 30, 33, 34, 40 | syl311anc 1386 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| 42 | 11, 41 | sylbid 240 | 1 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 {csn 4585 {cpr 4587 class class class wbr 5102 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 ≤ cle 11185 − cmin 11381 / cdiv 11811 2c2 12217 ℝ+crp 12927 ↑cexp 14002 √csqrt 15175 ℝ^crrx 25316 LineMcline 48709 Spherecsph 48710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-drng 20651 df-field 20652 df-staf 20759 df-srng 20760 df-lmod 20800 df-lss 20870 df-sra 21112 df-rgmod 21113 df-xmet 21289 df-met 21290 df-cnfld 21297 df-refld 21547 df-dsmm 21674 df-frlm 21689 df-nm 24503 df-tng 24505 df-tcph 25102 df-rrx 25318 df-ehl 25319 df-line 48711 df-sph 48712 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |