Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0 Structured version   Visualization version   GIF version

Theorem itsclinecirc0 48755
Description: The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.)
Hypotheses
Ref Expression
itsclc0.i 𝐼 = {1, 2}
itsclc0.e 𝐸 = (ℝ^‘𝐼)
itsclc0.p 𝑃 = (ℝ ↑m 𝐼)
itsclc0.s 𝑆 = (Sphere‘𝐸)
itsclc0.0 0 = (𝐼 × {0})
itsclc0.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0.l 𝐿 = (LineM𝐸)
itsclinecirc0.a 𝐴 = ((𝑌‘2) − (𝑍‘2))
itsclinecirc0.b 𝐵 = ((𝑍‘1) − (𝑌‘1))
itsclinecirc0.c 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))
Assertion
Ref Expression
itsclinecirc0 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Proof of Theorem itsclinecirc0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itsclc0.i . . . . . 6 𝐼 = {1, 2}
2 itsclc0.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
3 itsclc0.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
4 itsclinecirc0.l . . . . . 6 𝐿 = (LineM𝐸)
5 itsclinecirc0.a . . . . . 6 𝐴 = ((𝑌‘2) − (𝑍‘2))
6 itsclinecirc0.b . . . . . 6 𝐵 = ((𝑍‘1) − (𝑌‘1))
7 itsclinecirc0.c . . . . . 6 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest2 48726 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌𝐿𝑍) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
98adantr 480 . . . 4 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑌𝐿𝑍) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
109eleq2d 2814 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))
1110anbi2d 630 . 2 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ↔ (𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})))
121, 3rrx2pyel 48694 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
13123ad2ant1 1133 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌‘2) ∈ ℝ)
141, 3rrx2pyel 48694 . . . . . . 7 (𝑍𝑃 → (𝑍‘2) ∈ ℝ)
15143ad2ant2 1134 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑍‘2) ∈ ℝ)
1613, 15resubcld 11582 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘2) − (𝑍‘2)) ∈ ℝ)
175, 16eqeltrid 2832 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐴 ∈ ℝ)
1817adantr 480 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
191, 3rrx2pxel 48693 . . . . . . 7 (𝑍𝑃 → (𝑍‘1) ∈ ℝ)
20193ad2ant2 1134 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑍‘1) ∈ ℝ)
211, 3rrx2pxel 48693 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
22213ad2ant1 1133 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝑌‘1) ∈ ℝ)
2320, 22resubcld 11582 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑍‘1) − (𝑌‘1)) ∈ ℝ)
246, 23eqeltrid 2832 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐵 ∈ ℝ)
2524adantr 480 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
2613, 20remulcld 11180 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘2) · (𝑍‘1)) ∈ ℝ)
2722, 15remulcld 11180 . . . . . 6 ((𝑌𝑃𝑍𝑃𝑌𝑍) → ((𝑌‘1) · (𝑍‘2)) ∈ ℝ)
2826, 27resubcld 11582 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ∈ ℝ)
297, 28eqeltrid 2832 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → 𝐶 ∈ ℝ)
3029adantr 480 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
311, 3, 6, 5rrx2pnedifcoorneorr 48699 . . . . 5 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
3231orcomd 871 . . . 4 ((𝑌𝑃𝑍𝑃𝑌𝑍) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
3332adantr 480 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
34 simpr 484 . . 3 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷))
35 itsclc0.s . . . 4 𝑆 = (Sphere‘𝐸)
36 itsclc0.0 . . . 4 0 = (𝐼 × {0})
37 itsclc0.q . . . 4 𝑄 = ((𝐴↑2) + (𝐵↑2))
38 itsclc0.d . . . 4 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
39 eqid 2729 . . . 4 {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
401, 2, 3, 35, 36, 37, 38, 39itsclc0 48753 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4118, 25, 30, 33, 34, 40syl311anc 1386 . 2 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4211, 41sylbid 240 1 (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3402  {csn 4585  {cpr 4587   class class class wbr 5102   × cxp 5629  cfv 6499  (class class class)co 7369  m cmap 8776  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  cmin 11381   / cdiv 11811  2c2 12217  +crp 12927  cexp 14002  csqrt 15175  ℝ^crrx 25316  LineMcline 48709  Spherecsph 48710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-field 20652  df-staf 20759  df-srng 20760  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-xmet 21289  df-met 21290  df-cnfld 21297  df-refld 21547  df-dsmm 21674  df-frlm 21689  df-nm 24503  df-tng 24505  df-tcph 25102  df-rrx 25318  df-ehl 25319  df-line 48711  df-sph 48712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator