| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itsclinecirc0 | Structured version Visualization version GIF version | ||
| Description: The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.) |
| Ref | Expression |
|---|---|
| itsclc0.i | ⊢ 𝐼 = {1, 2} |
| itsclc0.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| itsclc0.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| itsclc0.s | ⊢ 𝑆 = (Sphere‘𝐸) |
| itsclc0.0 | ⊢ 0 = (𝐼 × {0}) |
| itsclc0.q | ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
| itsclc0.d | ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
| itsclinecirc0.l | ⊢ 𝐿 = (LineM‘𝐸) |
| itsclinecirc0.a | ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) |
| itsclinecirc0.b | ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) |
| itsclinecirc0.c | ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) |
| Ref | Expression |
|---|---|
| itsclinecirc0 | ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itsclc0.i | . . . . . 6 ⊢ 𝐼 = {1, 2} | |
| 2 | itsclc0.e | . . . . . 6 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 3 | itsclc0.p | . . . . . 6 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 4 | itsclinecirc0.l | . . . . . 6 ⊢ 𝐿 = (LineM‘𝐸) | |
| 5 | itsclinecirc0.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) | |
| 6 | itsclinecirc0.b | . . . . . 6 ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) | |
| 7 | itsclinecirc0.c | . . . . . 6 ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | rrx2linest2 48739 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
| 10 | 9 | eleq2d 2814 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})) |
| 11 | 10 | anbi2d 630 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ↔ (𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))) |
| 12 | 1, 3 | rrx2pyel 48707 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 13 | 12 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘2) ∈ ℝ) |
| 14 | 1, 3 | rrx2pyel 48707 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘2) ∈ ℝ) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘2) ∈ ℝ) |
| 16 | 13, 15 | resubcld 11548 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) − (𝑍‘2)) ∈ ℝ) |
| 17 | 5, 16 | eqeltrid 2832 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐴 ∈ ℝ) |
| 18 | 17 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ) |
| 19 | 1, 3 | rrx2pxel 48706 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘1) ∈ ℝ) |
| 20 | 19 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘1) ∈ ℝ) |
| 21 | 1, 3 | rrx2pxel 48706 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘1) ∈ ℝ) |
| 23 | 20, 22 | resubcld 11548 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑍‘1) − (𝑌‘1)) ∈ ℝ) |
| 24 | 6, 23 | eqeltrid 2832 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐵 ∈ ℝ) |
| 25 | 24 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ) |
| 26 | 13, 20 | remulcld 11145 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) · (𝑍‘1)) ∈ ℝ) |
| 27 | 22, 15 | remulcld 11145 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘1) · (𝑍‘2)) ∈ ℝ) |
| 28 | 26, 27 | resubcld 11548 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ∈ ℝ) |
| 29 | 7, 28 | eqeltrid 2832 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐶 ∈ ℝ) |
| 30 | 29 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ) |
| 31 | 1, 3, 6, 5 | rrx2pnedifcoorneorr 48712 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0)) |
| 32 | 31 | orcomd 871 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| 33 | 32 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| 34 | simpr 484 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) | |
| 35 | itsclc0.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
| 36 | itsclc0.0 | . . . 4 ⊢ 0 = (𝐼 × {0}) | |
| 37 | itsclc0.q | . . . 4 ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | |
| 38 | itsclc0.d | . . . 4 ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) | |
| 39 | eqid 2729 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} | |
| 40 | 1, 2, 3, 35, 36, 37, 38, 39 | itsclc0 48766 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| 41 | 18, 25, 30, 33, 34, 40 | syl311anc 1386 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| 42 | 11, 41 | sylbid 240 | 1 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 {csn 4577 {cpr 4579 class class class wbr 5092 × cxp 5617 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ≤ cle 11150 − cmin 11347 / cdiv 11777 2c2 12183 ℝ+crp 12893 ↑cexp 13968 √csqrt 15140 ℝ^crrx 25281 LineMcline 48722 Spherecsph 48723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-staf 20724 df-srng 20725 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-xmet 21254 df-met 21255 df-cnfld 21262 df-refld 21512 df-dsmm 21639 df-frlm 21654 df-nm 24468 df-tng 24470 df-tcph 25067 df-rrx 25283 df-ehl 25284 df-line 48724 df-sph 48725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |