![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itsclinecirc0 | Structured version Visualization version GIF version |
Description: The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.) |
Ref | Expression |
---|---|
itsclc0.i | ⊢ 𝐼 = {1, 2} |
itsclc0.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
itsclc0.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
itsclc0.s | ⊢ 𝑆 = (Sphere‘𝐸) |
itsclc0.0 | ⊢ 0 = (𝐼 × {0}) |
itsclc0.q | ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
itsclc0.d | ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
itsclinecirc0.l | ⊢ 𝐿 = (LineM‘𝐸) |
itsclinecirc0.a | ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) |
itsclinecirc0.b | ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) |
itsclinecirc0.c | ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) |
Ref | Expression |
---|---|
itsclinecirc0 | ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itsclc0.i | . . . . . 6 ⊢ 𝐼 = {1, 2} | |
2 | itsclc0.e | . . . . . 6 ⊢ 𝐸 = (ℝ^‘𝐼) | |
3 | itsclc0.p | . . . . . 6 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
4 | itsclinecirc0.l | . . . . . 6 ⊢ 𝐿 = (LineM‘𝐸) | |
5 | itsclinecirc0.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) | |
6 | itsclinecirc0.b | . . . . . 6 ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) | |
7 | itsclinecirc0.c | . . . . . 6 ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | rrx2linest2 48478 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
9 | 8 | adantr 480 | . . . 4 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑌𝐿𝑍) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
10 | 9 | eleq2d 2830 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})) |
11 | 10 | anbi2d 629 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ↔ (𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}))) |
12 | 1, 3 | rrx2pyel 48446 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
13 | 12 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘2) ∈ ℝ) |
14 | 1, 3 | rrx2pyel 48446 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘2) ∈ ℝ) |
15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘2) ∈ ℝ) |
16 | 13, 15 | resubcld 11718 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) − (𝑍‘2)) ∈ ℝ) |
17 | 5, 16 | eqeltrid 2848 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐴 ∈ ℝ) |
18 | 17 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ) |
19 | 1, 3 | rrx2pxel 48445 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑃 → (𝑍‘1) ∈ ℝ) |
20 | 19 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑍‘1) ∈ ℝ) |
21 | 1, 3 | rrx2pxel 48445 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
22 | 21 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝑌‘1) ∈ ℝ) |
23 | 20, 22 | resubcld 11718 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑍‘1) − (𝑌‘1)) ∈ ℝ) |
24 | 6, 23 | eqeltrid 2848 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐵 ∈ ℝ) |
25 | 24 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ) |
26 | 13, 20 | remulcld 11320 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘2) · (𝑍‘1)) ∈ ℝ) |
27 | 22, 15 | remulcld 11320 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → ((𝑌‘1) · (𝑍‘2)) ∈ ℝ) |
28 | 26, 27 | resubcld 11718 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ∈ ℝ) |
29 | 7, 28 | eqeltrid 2848 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → 𝐶 ∈ ℝ) |
30 | 29 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ) |
31 | 1, 3, 6, 5 | rrx2pnedifcoorneorr 48451 | . . . . 5 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0)) |
32 | 31 | orcomd 870 | . . . 4 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
33 | 32 | adantr 480 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
34 | simpr 484 | . . 3 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) | |
35 | itsclc0.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
36 | itsclc0.0 | . . . 4 ⊢ 0 = (𝐼 × {0}) | |
37 | itsclc0.q | . . . 4 ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | |
38 | itsclc0.d | . . . 4 ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) | |
39 | eqid 2740 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} | |
40 | 1, 2, 3, 35, 36, 37, 38, 39 | itsclc0 48505 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
41 | 18, 25, 30, 33, 34, 40 | syl311anc 1384 | . 2 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
42 | 11, 41 | sylbid 240 | 1 ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 {csn 4648 {cpr 4650 class class class wbr 5166 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 − cmin 11520 / cdiv 11947 2c2 12348 ℝ+crp 13057 ↑cexp 14112 √csqrt 15282 ℝ^crrx 25436 LineMcline 48461 Spherecsph 48462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-staf 20862 df-srng 20863 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-xmet 21380 df-met 21381 df-cnfld 21388 df-refld 21646 df-dsmm 21775 df-frlm 21790 df-nm 24616 df-tng 24618 df-tcph 25222 df-rrx 25438 df-ehl 25439 df-line 48463 df-sph 48464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |