Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq3 Structured version   Visualization version   GIF version

Theorem ltrneq3 38422
Description: Two translations agree at any atom not under the fiducial co-atom 𝑊 iff they are equal. (Contributed by NM, 25-Jul-2013.)
Hypotheses
Ref Expression
cdlemd.l = (le‘𝐾)
cdlemd.a 𝐴 = (Atoms‘𝐾)
cdlemd.h 𝐻 = (LHyp‘𝐾)
cdlemd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrneq3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) = (𝐺𝑃) ↔ 𝐹 = 𝐺))

Proof of Theorem ltrneq3
StepHypRef Expression
1 simpl1 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2l 1226 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐹𝑇)
3 simpl2r 1227 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐺𝑇)
4 simpl3 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simpr 486 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝐹𝑃) = (𝐺𝑃))
6 cdlemd.l . . . 4 = (le‘𝐾)
7 cdlemd.a . . . 4 𝐴 = (Atoms‘𝐾)
8 cdlemd.h . . . 4 𝐻 = (LHyp‘𝐾)
9 cdlemd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
106, 7, 8, 9cdlemd 38421 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐹 = 𝐺)
111, 2, 3, 4, 5, 10syl311anc 1384 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐹 = 𝐺)
12 fveq1 6803 . . 3 (𝐹 = 𝐺 → (𝐹𝑃) = (𝐺𝑃))
1312adantl 483 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝐺) → (𝐹𝑃) = (𝐺𝑃))
1411, 13impbida 799 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) = (𝐺𝑃) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104   class class class wbr 5081  cfv 6458  lecple 17018  Atomscatm 37477  HLchlt 37564  LHypclh 38198  LTrncltrn 38315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-map 8648  df-proset 18062  df-poset 18080  df-plt 18097  df-lub 18113  df-glb 18114  df-join 18115  df-meet 18116  df-p0 18192  df-p1 18193  df-lat 18199  df-clat 18266  df-oposet 37390  df-ol 37392  df-oml 37393  df-covers 37480  df-ats 37481  df-atl 37512  df-cvlat 37536  df-hlat 37565  df-llines 37712  df-psubsp 37717  df-pmap 37718  df-padd 38010  df-lhyp 38202  df-laut 38203  df-ldil 38318  df-ltrn 38319  df-trl 38373
This theorem is referenced by:  cdlemn3  39411
  Copyright terms: Public domain W3C validator