MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslem 30046
Description: Lemma for clwwisshclwws 30047. (Contributed by AV, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwslem ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐸,𝑗   𝑖,𝑁,𝑗   𝑖,𝑉,𝑗   𝑖,𝑊,𝑗

Proof of Theorem clwwisshclwwslem
StepHypRef Expression
1 elfzoelz 13716 . . . . . . . . 9 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
2 cshwlen 14847 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
31, 2sylan2 592 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
43oveq1d 7463 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) − 1) = ((♯‘𝑊) − 1))
54oveq2d 7464 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) = (0..^((♯‘𝑊) − 1)))
65eleq2d 2830 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
76adantr 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
8 simpll 766 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
91ad2antlr 726 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
10 lencl 14581 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
11 nn0z 12664 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
12 peano2zm 12686 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
14 nn0re 12562 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
1514lem1d 12228 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
16 eluz2 12909 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) ↔ (((♯‘𝑊) − 1) ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
1713, 11, 15, 16syl3anbrc 1343 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1810, 17syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1918adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
20 fzoss2 13744 . . . . . . . . . . 11 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2119, 20syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2221sselda 4008 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ (0..^(♯‘𝑊)))
23 cshwidxmod 14851 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
248, 9, 22, 23syl3anc 1371 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
25 elfzo1 13766 . . . . . . . . . . . 12 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
2625simp2bi 1146 . . . . . . . . . . 11 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
2726adantl 481 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
28 elfzom1p1elfzo 13796 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
2927, 28sylan 579 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
30 cshwidxmod 14851 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑗 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
318, 9, 29, 30syl3anc 1371 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
3224, 31preq12d 4766 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
3332adantlr 714 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
34 2z 12675 . . . . . . . . . . 11 2 ∈ ℤ
3534a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ∈ ℤ)
36 nnz 12660 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
37363ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
38 nnnn0 12560 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℕ0)
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
40 nnne0 12327 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ≠ 0)
41403ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 0)
42 1red 11291 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ∈ ℝ)
43 nnre 12300 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
44433ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 ∈ ℝ)
45 nnre 12300 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
46453ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
47 nnge1 12321 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
48473ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ≤ 𝑁)
49 simp3 1138 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 < (♯‘𝑊))
5042, 44, 46, 48, 49lelttrd 11448 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 < (♯‘𝑊))
5142, 50gtned 11425 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 1)
52 nn0n0n1ge2 12620 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0 ∧ (♯‘𝑊) ≠ 1) → 2 ≤ (♯‘𝑊))
5339, 41, 51, 52syl3anc 1371 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
54 eluz2 12909 . . . . . . . . . 10 ((♯‘𝑊) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ 2 ≤ (♯‘𝑊)))
5535, 37, 53, 54syl3anbrc 1343 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5625, 55sylbi 217 . . . . . . . 8 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5756ad3antlr 730 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ (ℤ‘2))
58 elfzoelz 13716 . . . . . . . 8 (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → 𝑗 ∈ ℤ)
5958adantl 481 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ ℤ)
601ad3antlr 730 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
61 simplrl 776 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
62 lsw 14612 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6362adantr 480 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6463preq1d 4764 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)})
6564eleq1d 2829 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 ↔ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6665biimpcd 249 . . . . . . . . . 10 ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6766adantl 481 . . . . . . . . 9 ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6867impcom 407 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
6968adantr 480 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
70 clwwisshclwwslemlem 30045 . . . . . . 7 ((((♯‘𝑊) ∈ (ℤ‘2) ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7157, 59, 60, 61, 69, 70syl311anc 1384 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7233, 71eqeltrd 2844 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7372ex 412 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
747, 73sylbid 240 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
7574ralrimiv 3151 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7675ex 412 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  ..^cfzo 13711   mod cmo 13920  chash 14379  Word cword 14562  lastSclsw 14610   cyclShift ccsh 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837
This theorem is referenced by:  clwwisshclwws  30047
  Copyright terms: Public domain W3C validator