MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslem 27786
Description: Lemma for clwwisshclwws 27787. (Contributed by AV, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwslem ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐸,𝑗   𝑖,𝑁,𝑗   𝑖,𝑉,𝑗   𝑖,𝑊,𝑗

Proof of Theorem clwwisshclwwslem
StepHypRef Expression
1 elfzoelz 13032 . . . . . . . . 9 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
2 cshwlen 14155 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
31, 2sylan2 594 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
43oveq1d 7165 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) − 1) = ((♯‘𝑊) − 1))
54oveq2d 7166 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) = (0..^((♯‘𝑊) − 1)))
65eleq2d 2898 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
76adantr 483 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
8 simpll 765 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
91ad2antlr 725 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
10 lencl 13877 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
11 nn0z 11999 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
12 peano2zm 12019 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
14 nn0re 11900 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
1514lem1d 11567 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
16 eluz2 12243 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) ↔ (((♯‘𝑊) − 1) ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
1713, 11, 15, 16syl3anbrc 1339 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1810, 17syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1918adantr 483 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
20 fzoss2 13059 . . . . . . . . . . 11 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2119, 20syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2221sselda 3967 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ (0..^(♯‘𝑊)))
23 cshwidxmod 14159 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
248, 9, 22, 23syl3anc 1367 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
25 elfzo1 13081 . . . . . . . . . . . 12 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
2625simp2bi 1142 . . . . . . . . . . 11 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
2726adantl 484 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
28 elfzom1p1elfzo 13111 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
2927, 28sylan 582 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
30 cshwidxmod 14159 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑗 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
318, 9, 29, 30syl3anc 1367 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
3224, 31preq12d 4671 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
3332adantlr 713 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
34 2z 12008 . . . . . . . . . . 11 2 ∈ ℤ
3534a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ∈ ℤ)
36 nnz 11998 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
37363ad2ant2 1130 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
38 nnnn0 11898 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℕ0)
39383ad2ant2 1130 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
40 nnne0 11665 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ≠ 0)
41403ad2ant2 1130 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 0)
42 1red 10636 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ∈ ℝ)
43 nnre 11639 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
44433ad2ant1 1129 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 ∈ ℝ)
45 nnre 11639 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
46453ad2ant2 1130 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
47 nnge1 11659 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
48473ad2ant1 1129 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ≤ 𝑁)
49 simp3 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 < (♯‘𝑊))
5042, 44, 46, 48, 49lelttrd 10792 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 < (♯‘𝑊))
5142, 50gtned 10769 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 1)
52 nn0n0n1ge2 11956 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0 ∧ (♯‘𝑊) ≠ 1) → 2 ≤ (♯‘𝑊))
5339, 41, 51, 52syl3anc 1367 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
54 eluz2 12243 . . . . . . . . . 10 ((♯‘𝑊) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ 2 ≤ (♯‘𝑊)))
5535, 37, 53, 54syl3anbrc 1339 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5625, 55sylbi 219 . . . . . . . 8 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5756ad3antlr 729 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ (ℤ‘2))
58 elfzoelz 13032 . . . . . . . 8 (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → 𝑗 ∈ ℤ)
5958adantl 484 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ ℤ)
601ad3antlr 729 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
61 simplrl 775 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
62 lsw 13910 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6362adantr 483 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6463preq1d 4669 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)})
6564eleq1d 2897 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 ↔ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6665biimpcd 251 . . . . . . . . . 10 ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6766adantl 484 . . . . . . . . 9 ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6867impcom 410 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
6968adantr 483 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
70 clwwisshclwwslemlem 27785 . . . . . . 7 ((((♯‘𝑊) ∈ (ℤ‘2) ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7157, 59, 60, 61, 69, 70syl311anc 1380 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7233, 71eqeltrd 2913 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7372ex 415 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
747, 73sylbid 242 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
7574ralrimiv 3181 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7675ex 415 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wss 3936  {cpr 4563   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  ..^cfzo 13027   mod cmo 13231  chash 13684  Word cword 13855  lastSclsw 13908   cyclShift ccsh 14144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-substr 13997  df-pfx 14027  df-csh 14145
This theorem is referenced by:  clwwisshclwws  27787
  Copyright terms: Public domain W3C validator