MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslem 27163
Description: Lemma for clwwisshclwws 27164. (Contributed by AV, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwslem ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐸,𝑗   𝑖,𝑁,𝑗   𝑖,𝑉,𝑗   𝑖,𝑊,𝑗

Proof of Theorem clwwisshclwwslem
StepHypRef Expression
1 elfzoelz 12677 . . . . . . . . 9 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
2 cshwlen 13753 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
31, 2sylan2 580 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
43oveq1d 6810 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) − 1) = ((♯‘𝑊) − 1))
54oveq2d 6811 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) = (0..^((♯‘𝑊) − 1)))
65eleq2d 2836 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
76adantr 466 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
8 simpll 750 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
91ad2antlr 706 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
10 lencl 13519 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
11 nn0z 11606 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
12 peano2zm 11626 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
14 nn0re 11507 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
1514lem1d 11162 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
16 eluz2 11898 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) ↔ (((♯‘𝑊) − 1) ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
1713, 11, 15, 16syl3anbrc 1428 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1810, 17syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1918adantr 466 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
20 fzoss2 12703 . . . . . . . . . . 11 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2119, 20syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2221sselda 3752 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ (0..^(♯‘𝑊)))
23 cshwidxmod 13757 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
248, 9, 22, 23syl3anc 1476 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
25 elfzo1 12725 . . . . . . . . . . . 12 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
2625simp2bi 1140 . . . . . . . . . . 11 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
2726adantl 467 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
28 elfzom1p1elfzo 12755 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
2927, 28sylan 569 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
30 cshwidxmod 13757 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑗 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
318, 9, 29, 30syl3anc 1476 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
3224, 31preq12d 4413 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
3332adantlr 694 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
34 2z 11615 . . . . . . . . . . 11 2 ∈ ℤ
3534a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ∈ ℤ)
36 nnz 11605 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
37363ad2ant2 1128 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
38 nnnn0 11505 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℕ0)
39383ad2ant2 1128 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
40 nnne0 11258 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ≠ 0)
41403ad2ant2 1128 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 0)
42 1red 10260 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ∈ ℝ)
43 nnre 11232 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
44433ad2ant1 1127 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 ∈ ℝ)
45 nnre 11232 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
46453ad2ant2 1128 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
47 nnge1 11251 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
48473ad2ant1 1127 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ≤ 𝑁)
49 simp3 1132 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 < (♯‘𝑊))
5042, 44, 46, 48, 49lelttrd 10400 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 < (♯‘𝑊))
5142, 50gtned 10377 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 1)
52 nn0n0n1ge2 11564 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0 ∧ (♯‘𝑊) ≠ 1) → 2 ≤ (♯‘𝑊))
5339, 41, 51, 52syl3anc 1476 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
54 eluz2 11898 . . . . . . . . . 10 ((♯‘𝑊) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ 2 ≤ (♯‘𝑊)))
5535, 37, 53, 54syl3anbrc 1428 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5625, 55sylbi 207 . . . . . . . 8 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5756ad3antlr 710 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ (ℤ‘2))
58 elfzoelz 12677 . . . . . . . 8 (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → 𝑗 ∈ ℤ)
5958adantl 467 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ ℤ)
601ad3antlr 710 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
61 simplrl 762 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
62 lsw 13547 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6362adantr 466 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6463preq1d 4411 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)})
6564eleq1d 2835 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 ↔ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6665biimpcd 239 . . . . . . . . . 10 ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6766adantl 467 . . . . . . . . 9 ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6867impcom 394 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
6968adantr 466 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
70 clwwisshclwwslemlem 27162 . . . . . . 7 ((((♯‘𝑊) ∈ (ℤ‘2) ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7157, 59, 60, 61, 69, 70syl311anc 1490 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7233, 71eqeltrd 2850 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7372ex 397 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
747, 73sylbid 230 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
7574ralrimiv 3114 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7675ex 397 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wss 3723  {cpr 4319   class class class wbr 4787  cfv 6030  (class class class)co 6795  cr 10140  0cc0 10141  1c1 10142   + caddc 10144   < clt 10279  cle 10280  cmin 10471  cn 11225  2c2 11275  0cn0 11498  cz 11583  cuz 11892  ..^cfzo 12672   mod cmo 12875  chash 13320  Word cword 13486  lastSclsw 13487   cyclShift ccsh 13742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-inf 8508  df-card 8968  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-substr 13498  df-csh 13743
This theorem is referenced by:  clwwisshclwws  27164
  Copyright terms: Public domain W3C validator