MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslem 27799
Description: Lemma for clwwisshclwws 27800. (Contributed by AV, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwslem ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐸,𝑗   𝑖,𝑁,𝑗   𝑖,𝑉,𝑗   𝑖,𝑊,𝑗

Proof of Theorem clwwisshclwwslem
StepHypRef Expression
1 elfzoelz 13033 . . . . . . . . 9 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
2 cshwlen 14152 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
31, 2sylan2 595 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
43oveq1d 7150 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) − 1) = ((♯‘𝑊) − 1))
54oveq2d 7151 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) = (0..^((♯‘𝑊) − 1)))
65eleq2d 2875 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
76adantr 484 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
8 simpll 766 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
91ad2antlr 726 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
10 lencl 13876 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
11 nn0z 11993 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
12 peano2zm 12013 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
14 nn0re 11894 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
1514lem1d 11562 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
16 eluz2 12237 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) ↔ (((♯‘𝑊) − 1) ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
1713, 11, 15, 16syl3anbrc 1340 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1810, 17syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1918adantr 484 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
20 fzoss2 13060 . . . . . . . . . . 11 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2119, 20syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2221sselda 3915 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ (0..^(♯‘𝑊)))
23 cshwidxmod 14156 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
248, 9, 22, 23syl3anc 1368 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
25 elfzo1 13082 . . . . . . . . . . . 12 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
2625simp2bi 1143 . . . . . . . . . . 11 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
2726adantl 485 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
28 elfzom1p1elfzo 13112 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
2927, 28sylan 583 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
30 cshwidxmod 14156 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑗 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
318, 9, 29, 30syl3anc 1368 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
3224, 31preq12d 4637 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
3332adantlr 714 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
34 2z 12002 . . . . . . . . . . 11 2 ∈ ℤ
3534a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ∈ ℤ)
36 nnz 11992 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
37363ad2ant2 1131 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
38 nnnn0 11892 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℕ0)
39383ad2ant2 1131 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
40 nnne0 11659 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ≠ 0)
41403ad2ant2 1131 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 0)
42 1red 10631 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ∈ ℝ)
43 nnre 11632 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
44433ad2ant1 1130 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 ∈ ℝ)
45 nnre 11632 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
46453ad2ant2 1131 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
47 nnge1 11653 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
48473ad2ant1 1130 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ≤ 𝑁)
49 simp3 1135 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 < (♯‘𝑊))
5042, 44, 46, 48, 49lelttrd 10787 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 < (♯‘𝑊))
5142, 50gtned 10764 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 1)
52 nn0n0n1ge2 11950 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0 ∧ (♯‘𝑊) ≠ 1) → 2 ≤ (♯‘𝑊))
5339, 41, 51, 52syl3anc 1368 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
54 eluz2 12237 . . . . . . . . . 10 ((♯‘𝑊) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ 2 ≤ (♯‘𝑊)))
5535, 37, 53, 54syl3anbrc 1340 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5625, 55sylbi 220 . . . . . . . 8 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5756ad3antlr 730 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ (ℤ‘2))
58 elfzoelz 13033 . . . . . . . 8 (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → 𝑗 ∈ ℤ)
5958adantl 485 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ ℤ)
601ad3antlr 730 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
61 simplrl 776 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
62 lsw 13907 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6362adantr 484 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6463preq1d 4635 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)})
6564eleq1d 2874 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 ↔ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6665biimpcd 252 . . . . . . . . . 10 ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6766adantl 485 . . . . . . . . 9 ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6867impcom 411 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
6968adantr 484 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
70 clwwisshclwwslemlem 27798 . . . . . . 7 ((((♯‘𝑊) ∈ (ℤ‘2) ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7157, 59, 60, 61, 69, 70syl311anc 1381 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7233, 71eqeltrd 2890 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7372ex 416 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
747, 73sylbid 243 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
7574ralrimiv 3148 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7675ex 416 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881  {cpr 4527   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ..^cfzo 13028   mod cmo 13232  chash 13686  Word cword 13857  lastSclsw 13905   cyclShift ccsh 14141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142
This theorem is referenced by:  clwwisshclwws  27800
  Copyright terms: Public domain W3C validator