MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslem 29950
Description: Lemma for clwwisshclwws 29951. (Contributed by AV, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwslem ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐸,𝑗   𝑖,𝑁,𝑗   𝑖,𝑉,𝑗   𝑖,𝑊,𝑗

Proof of Theorem clwwisshclwwslem
StepHypRef Expression
1 elfzoelz 13627 . . . . . . . . 9 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
2 cshwlen 14771 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
31, 2sylan2 593 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
43oveq1d 7405 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) − 1) = ((♯‘𝑊) − 1))
54oveq2d 7406 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) = (0..^((♯‘𝑊) − 1)))
65eleq2d 2815 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
76adantr 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) ↔ 𝑗 ∈ (0..^((♯‘𝑊) − 1))))
8 simpll 766 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
91ad2antlr 727 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
10 lencl 14505 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
11 nn0z 12561 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
12 peano2zm 12583 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
14 nn0re 12458 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
1514lem1d 12123 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
16 eluz2 12806 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) ↔ (((♯‘𝑊) − 1) ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
1713, 11, 15, 16syl3anbrc 1344 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1810, 17syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
1918adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)))
20 fzoss2 13655 . . . . . . . . . . 11 ((♯‘𝑊) ∈ (ℤ‘((♯‘𝑊) − 1)) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2119, 20syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
2221sselda 3949 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ (0..^(♯‘𝑊)))
23 cshwidxmod 14775 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
248, 9, 22, 23syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))))
25 elfzo1 13680 . . . . . . . . . . . 12 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
2625simp2bi 1146 . . . . . . . . . . 11 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
2726adantl 481 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
28 elfzom1p1elfzo 13713 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
2927, 28sylan 580 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (𝑗 + 1) ∈ (0..^(♯‘𝑊)))
30 cshwidxmod 14775 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑗 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
318, 9, 29, 30syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 cyclShift 𝑁)‘(𝑗 + 1)) = (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊))))
3224, 31preq12d 4708 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
3332adantlr 715 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} = {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))})
34 2z 12572 . . . . . . . . . . 11 2 ∈ ℤ
3534a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ∈ ℤ)
36 nnz 12557 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
37363ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
38 nnnn0 12456 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℕ0)
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
40 nnne0 12227 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ≠ 0)
41403ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 0)
42 1red 11182 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ∈ ℝ)
43 nnre 12200 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
44433ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 ∈ ℝ)
45 nnre 12200 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
46453ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
47 nnge1 12221 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
48473ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 ≤ 𝑁)
49 simp3 1138 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 𝑁 < (♯‘𝑊))
5042, 44, 46, 48, 49lelttrd 11339 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 1 < (♯‘𝑊))
5142, 50gtned 11316 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ≠ 1)
52 nn0n0n1ge2 12517 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0 ∧ (♯‘𝑊) ≠ 1) → 2 ≤ (♯‘𝑊))
5339, 41, 51, 52syl3anc 1373 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
54 eluz2 12806 . . . . . . . . . 10 ((♯‘𝑊) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ 2 ≤ (♯‘𝑊)))
5535, 37, 53, 54syl3anbrc 1344 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5625, 55sylbi 217 . . . . . . . 8 (𝑁 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘2))
5756ad3antlr 731 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ (ℤ‘2))
58 elfzoelz 13627 . . . . . . . 8 (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → 𝑗 ∈ ℤ)
5958adantl 481 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑗 ∈ ℤ)
601ad3antlr 731 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → 𝑁 ∈ ℤ)
61 simplrl 776 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
62 lsw 14536 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6362adantr 480 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6463preq1d 4706 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)})
6564eleq1d 2814 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 ↔ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6665biimpcd 249 . . . . . . . . . 10 ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6766adantl 481 . . . . . . . . 9 ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸))
6867impcom 407 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
6968adantr 480 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸)
70 clwwisshclwwslemlem 29949 . . . . . . 7 ((((♯‘𝑊) ∈ (ℤ‘2) ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(𝑊‘((♯‘𝑊) − 1)), (𝑊‘0)} ∈ 𝐸) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7157, 59, 60, 61, 69, 70syl311anc 1386 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊‘((𝑗 + 𝑁) mod (♯‘𝑊))), (𝑊‘(((𝑗 + 1) + 𝑁) mod (♯‘𝑊)))} ∈ 𝐸)
7233, 71eqeltrd 2829 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ 𝑗 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7372ex 412 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘𝑊) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
747, 73sylbid 240 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → (𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)) → {((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
7574ralrimiv 3125 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸)
7675ex 412 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  ..^cfzo 13622   mod cmo 13838  chash 14302  Word cword 14485  lastSclsw 14534   cyclShift ccsh 14760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-substr 14613  df-pfx 14643  df-csh 14761
This theorem is referenced by:  clwwisshclwws  29951
  Copyright terms: Public domain W3C validator