Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem15 Structured version   Visualization version   GIF version

Theorem dalawlem15 37593
Description: Lemma for dalaw 37594. Swap variable triples 𝑃𝑄𝑅 and 𝑆𝑇𝑈 in dalawlem14 37592, to obtain the elimination of the remaining conditions in dalawlem1 37579. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
dalawlem2.o 𝑂 = (LPlanes‘𝐾)
Assertion
Ref Expression
dalawlem15 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem15
StepHypRef Expression
1 simp11 1205 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
2 simp12 1206 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))))
3 simp21 1208 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
4 simp31 1211 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
5 dalawlem.j . . . . . . . . . . 11 = (join‘𝐾)
6 dalawlem.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
75, 6hlatjcom 37076 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) = (𝑆 𝑃))
81, 3, 4, 7syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) = (𝑆 𝑃))
9 simp22 1209 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
10 simp32 1212 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
115, 6hlatjcom 37076 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
121, 9, 10, 11syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) = (𝑇 𝑄))
138, 12oveq12d 7220 . . . . . . . 8 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) = ((𝑆 𝑃) (𝑇 𝑄)))
1413breq1d 5053 . . . . . . 7 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ↔ ((𝑆 𝑃) (𝑇 𝑄)) (𝑆 𝑇)))
1514notbid 321 . . . . . 6 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ↔ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑆 𝑇)))
1613breq1d 5053 . . . . . . 7 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ↔ ((𝑆 𝑃) (𝑇 𝑄)) (𝑇 𝑈)))
1716notbid 321 . . . . . 6 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ↔ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑇 𝑈)))
1813breq1d 5053 . . . . . . 7 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆) ↔ ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑆)))
1918notbid 321 . . . . . 6 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆) ↔ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑆)))
2015, 17, 193anbi123d 1438 . . . . 5 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ↔ (¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑆 𝑇) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑇 𝑈) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑆))))
2120anbi2d 632 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ↔ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑆 𝑇) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑇 𝑈) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑆)))))
222, 21mtbid 327 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑆 𝑇) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑇 𝑈) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑆))))
23 simp13 1207 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
245, 6hlatjcom 37076 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑃𝐴) → (𝑆 𝑃) = (𝑃 𝑆))
251, 4, 3, 24syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑃) = (𝑃 𝑆))
265, 6hlatjcom 37076 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑄𝐴) → (𝑇 𝑄) = (𝑄 𝑇))
271, 10, 9, 26syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑄) = (𝑄 𝑇))
2825, 27oveq12d 7220 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑃) (𝑇 𝑄)) = ((𝑃 𝑆) (𝑄 𝑇)))
29 simp33 1213 . . . . 5 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
30 simp23 1210 . . . . 5 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
315, 6hlatjcom 37076 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑅𝐴) → (𝑈 𝑅) = (𝑅 𝑈))
321, 29, 30, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑅) = (𝑅 𝑈))
3323, 28, 323brtr4d 5075 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑅))
34 simp3 1140 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆𝐴𝑇𝐴𝑈𝐴))
35 simp2 1139 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃𝐴𝑄𝐴𝑅𝐴))
36 dalawlem.l . . . 4 = (le‘𝐾)
37 dalawlem.m . . . 4 = (meet‘𝐾)
38 dalawlem2.o . . . 4 𝑂 = (LPlanes‘𝐾)
3936, 5, 37, 6, 38dalawlem14 37592 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑆 𝑇) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑇 𝑈) ∧ ¬ ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑆))) ∧ ((𝑆 𝑃) (𝑇 𝑄)) (𝑈 𝑅)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑆 𝑇) (𝑃 𝑄)) (((𝑇 𝑈) (𝑄 𝑅)) ((𝑈 𝑆) (𝑅 𝑃))))
401, 22, 33, 34, 35, 39syl311anc 1386 . 2 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) (𝑃 𝑄)) (((𝑇 𝑈) (𝑄 𝑅)) ((𝑈 𝑆) (𝑅 𝑃))))
411hllatd 37072 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
42 eqid 2734 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4342, 5, 6hlatjcl 37075 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
441, 3, 9, 43syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
4542, 5, 6hlatjcl 37075 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
461, 4, 10, 45syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) ∈ (Base‘𝐾))
4742, 37latmcom 17941 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
4841, 44, 46, 47syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
4942, 5, 6hlatjcl 37075 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
501, 9, 30, 49syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
5142, 5, 6hlatjcl 37075 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
521, 10, 29, 51syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
5342, 37latmcom 17941 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
5441, 50, 52, 53syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
5542, 5, 6hlatjcl 37075 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
561, 30, 3, 55syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
5742, 5, 6hlatjcl 37075 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
581, 29, 4, 57syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
5942, 37latmcom 17941 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) = ((𝑈 𝑆) (𝑅 𝑃)))
6041, 56, 58, 59syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) = ((𝑈 𝑆) (𝑅 𝑃)))
6154, 60oveq12d 7220 . 2 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) = (((𝑇 𝑈) (𝑄 𝑅)) ((𝑈 𝑆) (𝑅 𝑃))))
6240, 48, 613brtr4d 5075 1 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5043  cfv 6369  (class class class)co 7202  Basecbs 16684  lecple 16774  joincjn 17790  meetcmee 17791  Latclat 17909  Atomscatm 36971  HLchlt 37058  LPlanesclpl 37200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-proset 17774  df-poset 17792  df-plt 17808  df-lub 17824  df-glb 17825  df-join 17826  df-meet 17827  df-p0 17903  df-lat 17910  df-clat 17977  df-oposet 36884  df-ol 36886  df-oml 36887  df-covers 36974  df-ats 36975  df-atl 37006  df-cvlat 37030  df-hlat 37059  df-llines 37206  df-lplanes 37207  df-psubsp 37211  df-pmap 37212  df-padd 37504
This theorem is referenced by:  dalaw  37594
  Copyright terms: Public domain W3C validator