MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis2f Structured version   Visualization version   GIF version

Theorem tfis2f 7702
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2f.1 𝑥𝜓
tfis2f.2 (𝑥 = 𝑦 → (𝜑𝜓))
tfis2f.3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis2f (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem tfis2f
StepHypRef Expression
1 tfis2f.1 . . . . 5 𝑥𝜓
2 tfis2f.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2sbiev 2309 . . . 4 ([𝑦 / 𝑥]𝜑𝜓)
43ralbii 3092 . . 3 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
5 tfis2f.3 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
64, 5syl5bi 241 . 2 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
76tfis 7701 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1786  [wsb 2067  wcel 2106  wral 3064  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270
This theorem is referenced by:  tfis2  7703  tfr3  8230
  Copyright terms: Public domain W3C validator