![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfis2f | Structured version Visualization version GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
tfis2f.1 | ⊢ Ⅎ𝑥𝜓 |
tfis2f.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
tfis2f.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
tfis2f | ⊢ (𝑥 ∈ On → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfis2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
2 | tfis2f.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | sbie 2484 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
4 | 3 | ralbii 3162 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
5 | tfis2f.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
6 | 4, 5 | syl5bi 234 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) |
7 | 6 | tfis 7334 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 Ⅎwnf 1827 [wsb 2011 ∈ wcel 2107 ∀wral 3090 Oncon0 5978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-tr 4990 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-ord 5981 df-on 5982 |
This theorem is referenced by: tfis2 7336 tfr3 7780 |
Copyright terms: Public domain | W3C validator |