MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis2f Structured version   Visualization version   GIF version

Theorem tfis2f 7335
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2f.1 𝑥𝜓
tfis2f.2 (𝑥 = 𝑦 → (𝜑𝜓))
tfis2f.3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis2f (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem tfis2f
StepHypRef Expression
1 tfis2f.1 . . . . 5 𝑥𝜓
2 tfis2f.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2sbie 2484 . . . 4 ([𝑦 / 𝑥]𝜑𝜓)
43ralbii 3162 . . 3 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
5 tfis2f.3 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
64, 5syl5bi 234 . 2 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
76tfis 7334 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wnf 1827  [wsb 2011  wcel 2107  wral 3090  Oncon0 5978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-tr 4990  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-ord 5981  df-on 5982
This theorem is referenced by:  tfis2  7336  tfr3  7780
  Copyright terms: Public domain W3C validator