MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis2f Structured version   Visualization version   GIF version

Theorem tfis2f 7860
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2f.1 𝑥𝜓
tfis2f.2 (𝑥 = 𝑦 → (𝜑𝜓))
tfis2f.3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis2f (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem tfis2f
StepHypRef Expression
1 tfis2f.1 . . . . 5 𝑥𝜓
2 tfis2f.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2sbiev 2304 . . . 4 ([𝑦 / 𝑥]𝜑𝜓)
43ralbii 3090 . . 3 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
5 tfis2f.3 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
64, 5biimtrid 241 . 2 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
76tfis 7859 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1778  [wsb 2060  wcel 2099  wral 3058  Oncon0 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6372  df-on 6373
This theorem is referenced by:  tfis2  7861  tfr3  8420
  Copyright terms: Public domain W3C validator