Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfis2 | Structured version Visualization version GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
tfis2.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
tfis2.2 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
tfis2 | ⊢ (𝑥 ∈ On → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | tfis2.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | tfis2.2 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
4 | 1, 2, 3 | tfis2f 7677 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∀wral 3063 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: tfis3 7679 smogt 8169 findcard3 8987 ordiso2 9204 cantnf 9381 cfsmolem 9957 fpwwe2lem7 10324 nqereu 10616 tfis2d 46272 |
Copyright terms: Public domain | W3C validator |