MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis2 Structured version   Visualization version   GIF version

Theorem tfis2 7879
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis2.2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis2 (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem tfis2
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜓
2 tfis2.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis2.2 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
41, 2, 3tfis2f 7878 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107  wral 3060  Oncon0 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387
This theorem is referenced by:  tfis3  7880  smogt  8408  findcard3  9319  findcard3OLD  9320  ordiso2  9556  cantnf  9734  cfsmolem  10311  fpwwe2lem7  10678  nqereu  10970  addsprop  28010  negsprop  28068  mulsprop  28157  tfis2d  49254
  Copyright terms: Public domain W3C validator