MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgifscgr Structured version   Visualization version   GIF version

Theorem tgifscgr 28534
Description: Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐾, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐾. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.)
Hypotheses
Ref Expression
tgbtwncgr.p 𝑃 = (Base‘𝐺)
tgbtwncgr.m = (dist‘𝐺)
tgbtwncgr.i 𝐼 = (Itv‘𝐺)
tgbtwncgr.g (𝜑𝐺 ∈ TarskiG)
tgbtwncgr.a (𝜑𝐴𝑃)
tgbtwncgr.b (𝜑𝐵𝑃)
tgbtwncgr.c (𝜑𝐶𝑃)
tgbtwncgr.d (𝜑𝐷𝑃)
tgifscgr.e (𝜑𝐸𝑃)
tgifscgr.f (𝜑𝐹𝑃)
tgifscgr.g (𝜑𝐾𝑃)
tgifscgr.h (𝜑𝐻𝑃)
tgifscgr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgifscgr.2 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
tgifscgr.3 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
tgifscgr.4 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
tgifscgr.5 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
tgifscgr.6 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
Assertion
Ref Expression
tgifscgr (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))

Proof of Theorem tgifscgr
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwncgr.p . . 3 𝑃 = (Base‘𝐺)
2 tgbtwncgr.m . . 3 = (dist‘𝐺)
3 tgbtwncgr.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwncgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
6 tgbtwncgr.b . . . 4 (𝜑𝐵𝑃)
76adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
8 tgbtwncgr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgifscgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 484 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
13 tgifscgr.h . . . 4 (𝜑𝐻𝑃)
1413adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐻𝑃)
151, 2, 3, 5, 7, 9, 11, 12, 14tgldim0cgr 28531 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐷) = (𝐹 𝐻))
16 tgifscgr.6 . . . . 5 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
1716ad2antrr 725 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐾 𝐻))
184ad2antrr 725 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
19 tgbtwncgr.c . . . . . . 7 (𝜑𝐶𝑃)
2019ad2antrr 725 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶𝑃)
216ad2antrr 725 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵𝑃)
22 tgifscgr.1 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
2322ad2antrr 725 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
24 simpr 484 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶)
2524oveq1d 7463 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐶) = (𝐶𝐼𝐶))
2623, 25eleqtrd 2846 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶))
271, 2, 3, 18, 20, 21, 26axtgbtwnid 28492 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶 = 𝐵)
2827oveq1d 7463 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐵 𝐷))
29 tgifscgr.g . . . . . . 7 (𝜑𝐾𝑃)
3029ad2antrr 725 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾𝑃)
3110ad2antrr 725 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹𝑃)
32 tgifscgr.2 . . . . . . . 8 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
3332ad2antrr 725 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐸𝐼𝐾))
34 tgifscgr.e . . . . . . . . . 10 (𝜑𝐸𝑃)
3534ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸𝑃)
36 tgbtwncgr.a . . . . . . . . . 10 (𝜑𝐴𝑃)
3736ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴𝑃)
3824oveq2d 7464 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐴) = (𝐴 𝐶))
39 tgifscgr.3 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
4039ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐶) = (𝐸 𝐾))
4138, 40eqtr2d 2781 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸 𝐾) = (𝐴 𝐴))
421, 2, 3, 18, 35, 30, 37, 41axtgcgrid 28489 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸 = 𝐾)
4342oveq1d 7463 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸𝐼𝐾) = (𝐾𝐼𝐾))
4433, 43eleqtrd 2846 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐾𝐼𝐾))
451, 2, 3, 18, 30, 31, 44axtgbtwnid 28492 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾 = 𝐹)
4645oveq1d 7463 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐾 𝐻) = (𝐹 𝐻))
4717, 28, 463eqtr3d 2788 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
484ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐺 ∈ TarskiG)
4948ad2antrr 725 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐺 ∈ TarskiG)
5049ad2antrr 725 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐺 ∈ TarskiG)
51 simp-4r 783 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝑃)
5219ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐶𝑃)
5352ad2antrr 725 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐶𝑃)
5453ad2antrr 725 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑃)
556ad6antr 735 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵𝑃)
56 simplr 768 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑓𝑃)
5729ad4antr 731 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐾𝑃)
5857ad2antrr 725 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾𝑃)
5910ad6antr 735 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹𝑃)
608ad6antr 735 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐷𝑃)
6113ad6antr 735 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐻𝑃)
62 simpllr 775 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
6362simprd 495 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑒)
6463necomd 3002 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝐶)
6536ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐴𝑃)
6665ad4antr 731 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝑃)
6722ad6antr 735 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵 ∈ (𝐴𝐼𝐶))
6862simpld 494 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐴𝐼𝑒))
691, 2, 3, 50, 66, 55, 54, 51, 67, 68tgbtwnexch3 28520 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐵𝐼𝑒))
701, 2, 3, 50, 55, 54, 51, 69tgbtwncom 28514 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝑒𝐼𝐵))
7134ad6antr 735 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐸𝑃)
7232ad6antr 735 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹 ∈ (𝐸𝐼𝐾))
73 simprl 770 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐸𝐼𝑓))
741, 2, 3, 50, 71, 59, 58, 56, 72, 73tgbtwnexch3 28520 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐹𝐼𝑓))
751, 2, 3, 50, 59, 58, 56, 74tgbtwncom 28514 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝑓𝐼𝐹))
76 simprr 772 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐾 𝑓) = (𝐶 𝑒))
7776eqcomd 2746 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝑒) = (𝐾 𝑓))
781, 2, 3, 50, 54, 51, 58, 56, 77tgcgrcomlr 28506 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐶) = (𝑓 𝐾))
79 tgifscgr.4 . . . . . . . 8 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
8079ad6antr 735 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐶) = (𝐹 𝐾))
811, 2, 3, 50, 55, 54, 59, 58, 80tgcgrcomlr 28506 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐵) = (𝐾 𝐹))
82 simp-5r 785 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝐶)
8339ad6antr 735 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐶) = (𝐸 𝐾))
84 tgifscgr.5 . . . . . . . 8 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
8584ad6antr 735 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐷) = (𝐸 𝐻))
8616ad6antr 735 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐷) = (𝐾 𝐻))
871, 2, 3, 50, 66, 54, 51, 71, 58, 56, 60, 61, 82, 68, 73, 83, 77, 85, 86axtg5seg 28491 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐷) = (𝑓 𝐻))
881, 2, 3, 50, 51, 54, 55, 56, 58, 59, 60, 61, 64, 70, 75, 78, 81, 87, 86axtg5seg 28491 . . . . 5 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐷) = (𝐹 𝐻))
8934ad4antr 731 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐸𝑃)
90 simplr 768 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝑒𝑃)
911, 2, 3, 49, 89, 57, 53, 90axtgsegcon 28490 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → ∃𝑓𝑃 (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒)))
9288, 91r19.29a 3168 . . . 4 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → (𝐵 𝐷) = (𝐹 𝐻))
93 simplr 768 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 2 ≤ (♯‘𝑃))
941, 2, 3, 48, 65, 52, 93tgbtwndiff 28532 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → ∃𝑒𝑃 (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
9592, 94r19.29a 3168 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
9647, 95pm2.61dane 3035 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 𝐷) = (𝐹 𝐻))
971, 36tgldimor 28528 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
9815, 96, 97mpjaodan 959 1 (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  1c1 11185  cle 11325  2c2 12348  chash 14379  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  tgcgrsub  28535  tgbtwnxfr  28556  tgfscgr  28594  tgbtwnconn1lem3  28600  miriso  28696  krippenlem  28716  midexlem  28718  colperpexlem1  28756  opphllem  28761
  Copyright terms: Public domain W3C validator