MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgifscgr Structured version   Visualization version   GIF version

Theorem tgifscgr 28435
Description: Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐾, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐾. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.)
Hypotheses
Ref Expression
tgbtwncgr.p 𝑃 = (Base‘𝐺)
tgbtwncgr.m = (dist‘𝐺)
tgbtwncgr.i 𝐼 = (Itv‘𝐺)
tgbtwncgr.g (𝜑𝐺 ∈ TarskiG)
tgbtwncgr.a (𝜑𝐴𝑃)
tgbtwncgr.b (𝜑𝐵𝑃)
tgbtwncgr.c (𝜑𝐶𝑃)
tgbtwncgr.d (𝜑𝐷𝑃)
tgifscgr.e (𝜑𝐸𝑃)
tgifscgr.f (𝜑𝐹𝑃)
tgifscgr.g (𝜑𝐾𝑃)
tgifscgr.h (𝜑𝐻𝑃)
tgifscgr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgifscgr.2 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
tgifscgr.3 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
tgifscgr.4 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
tgifscgr.5 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
tgifscgr.6 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
Assertion
Ref Expression
tgifscgr (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))

Proof of Theorem tgifscgr
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwncgr.p . . 3 𝑃 = (Base‘𝐺)
2 tgbtwncgr.m . . 3 = (dist‘𝐺)
3 tgbtwncgr.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwncgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
6 tgbtwncgr.b . . . 4 (𝜑𝐵𝑃)
76adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
8 tgbtwncgr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgifscgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 484 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
13 tgifscgr.h . . . 4 (𝜑𝐻𝑃)
1413adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐻𝑃)
151, 2, 3, 5, 7, 9, 11, 12, 14tgldim0cgr 28432 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐷) = (𝐹 𝐻))
16 tgifscgr.6 . . . . 5 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
1716ad2antrr 726 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐾 𝐻))
184ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
19 tgbtwncgr.c . . . . . . 7 (𝜑𝐶𝑃)
2019ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶𝑃)
216ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵𝑃)
22 tgifscgr.1 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
2322ad2antrr 726 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
24 simpr 484 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶)
2524oveq1d 7402 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐶) = (𝐶𝐼𝐶))
2623, 25eleqtrd 2830 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶))
271, 2, 3, 18, 20, 21, 26axtgbtwnid 28393 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶 = 𝐵)
2827oveq1d 7402 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐵 𝐷))
29 tgifscgr.g . . . . . . 7 (𝜑𝐾𝑃)
3029ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾𝑃)
3110ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹𝑃)
32 tgifscgr.2 . . . . . . . 8 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
3332ad2antrr 726 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐸𝐼𝐾))
34 tgifscgr.e . . . . . . . . . 10 (𝜑𝐸𝑃)
3534ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸𝑃)
36 tgbtwncgr.a . . . . . . . . . 10 (𝜑𝐴𝑃)
3736ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴𝑃)
3824oveq2d 7403 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐴) = (𝐴 𝐶))
39 tgifscgr.3 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
4039ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐶) = (𝐸 𝐾))
4138, 40eqtr2d 2765 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸 𝐾) = (𝐴 𝐴))
421, 2, 3, 18, 35, 30, 37, 41axtgcgrid 28390 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸 = 𝐾)
4342oveq1d 7402 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸𝐼𝐾) = (𝐾𝐼𝐾))
4433, 43eleqtrd 2830 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐾𝐼𝐾))
451, 2, 3, 18, 30, 31, 44axtgbtwnid 28393 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾 = 𝐹)
4645oveq1d 7402 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐾 𝐻) = (𝐹 𝐻))
4717, 28, 463eqtr3d 2772 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
484ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐺 ∈ TarskiG)
4948ad2antrr 726 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐺 ∈ TarskiG)
5049ad2antrr 726 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐺 ∈ TarskiG)
51 simp-4r 783 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝑃)
5219ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐶𝑃)
5352ad2antrr 726 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐶𝑃)
5453ad2antrr 726 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑃)
556ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵𝑃)
56 simplr 768 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑓𝑃)
5729ad4antr 732 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐾𝑃)
5857ad2antrr 726 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾𝑃)
5910ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹𝑃)
608ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐷𝑃)
6113ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐻𝑃)
62 simpllr 775 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
6362simprd 495 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑒)
6463necomd 2980 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝐶)
6536ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐴𝑃)
6665ad4antr 732 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝑃)
6722ad6antr 736 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵 ∈ (𝐴𝐼𝐶))
6862simpld 494 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐴𝐼𝑒))
691, 2, 3, 50, 66, 55, 54, 51, 67, 68tgbtwnexch3 28421 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐵𝐼𝑒))
701, 2, 3, 50, 55, 54, 51, 69tgbtwncom 28415 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝑒𝐼𝐵))
7134ad6antr 736 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐸𝑃)
7232ad6antr 736 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹 ∈ (𝐸𝐼𝐾))
73 simprl 770 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐸𝐼𝑓))
741, 2, 3, 50, 71, 59, 58, 56, 72, 73tgbtwnexch3 28421 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐹𝐼𝑓))
751, 2, 3, 50, 59, 58, 56, 74tgbtwncom 28415 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝑓𝐼𝐹))
76 simprr 772 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐾 𝑓) = (𝐶 𝑒))
7776eqcomd 2735 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝑒) = (𝐾 𝑓))
781, 2, 3, 50, 54, 51, 58, 56, 77tgcgrcomlr 28407 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐶) = (𝑓 𝐾))
79 tgifscgr.4 . . . . . . . 8 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
8079ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐶) = (𝐹 𝐾))
811, 2, 3, 50, 55, 54, 59, 58, 80tgcgrcomlr 28407 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐵) = (𝐾 𝐹))
82 simp-5r 785 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝐶)
8339ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐶) = (𝐸 𝐾))
84 tgifscgr.5 . . . . . . . 8 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
8584ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐷) = (𝐸 𝐻))
8616ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐷) = (𝐾 𝐻))
871, 2, 3, 50, 66, 54, 51, 71, 58, 56, 60, 61, 82, 68, 73, 83, 77, 85, 86axtg5seg 28392 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐷) = (𝑓 𝐻))
881, 2, 3, 50, 51, 54, 55, 56, 58, 59, 60, 61, 64, 70, 75, 78, 81, 87, 86axtg5seg 28392 . . . . 5 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐷) = (𝐹 𝐻))
8934ad4antr 732 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐸𝑃)
90 simplr 768 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝑒𝑃)
911, 2, 3, 49, 89, 57, 53, 90axtgsegcon 28391 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → ∃𝑓𝑃 (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒)))
9288, 91r19.29a 3141 . . . 4 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → (𝐵 𝐷) = (𝐹 𝐻))
93 simplr 768 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 2 ≤ (♯‘𝑃))
941, 2, 3, 48, 65, 52, 93tgbtwndiff 28433 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → ∃𝑒𝑃 (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
9592, 94r19.29a 3141 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
9647, 95pm2.61dane 3012 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 𝐷) = (𝐹 𝐻))
971, 36tgldimor 28429 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
9815, 96, 97mpjaodan 960 1 (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  1c1 11069  cle 11209  2c2 12241  chash 14295  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380
This theorem is referenced by:  tgcgrsub  28436  tgbtwnxfr  28457  tgfscgr  28495  tgbtwnconn1lem3  28501  miriso  28597  krippenlem  28617  midexlem  28619  colperpexlem1  28657  opphllem  28662
  Copyright terms: Public domain W3C validator