MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgifscgr Structured version   Visualization version   GIF version

Theorem tgifscgr 28489
Description: Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐾, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐾. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.)
Hypotheses
Ref Expression
tgbtwncgr.p 𝑃 = (Base‘𝐺)
tgbtwncgr.m = (dist‘𝐺)
tgbtwncgr.i 𝐼 = (Itv‘𝐺)
tgbtwncgr.g (𝜑𝐺 ∈ TarskiG)
tgbtwncgr.a (𝜑𝐴𝑃)
tgbtwncgr.b (𝜑𝐵𝑃)
tgbtwncgr.c (𝜑𝐶𝑃)
tgbtwncgr.d (𝜑𝐷𝑃)
tgifscgr.e (𝜑𝐸𝑃)
tgifscgr.f (𝜑𝐹𝑃)
tgifscgr.g (𝜑𝐾𝑃)
tgifscgr.h (𝜑𝐻𝑃)
tgifscgr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgifscgr.2 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
tgifscgr.3 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
tgifscgr.4 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
tgifscgr.5 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
tgifscgr.6 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
Assertion
Ref Expression
tgifscgr (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))

Proof of Theorem tgifscgr
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwncgr.p . . 3 𝑃 = (Base‘𝐺)
2 tgbtwncgr.m . . 3 = (dist‘𝐺)
3 tgbtwncgr.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwncgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
6 tgbtwncgr.b . . . 4 (𝜑𝐵𝑃)
76adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
8 tgbtwncgr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgifscgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 484 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
13 tgifscgr.h . . . 4 (𝜑𝐻𝑃)
1413adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐻𝑃)
151, 2, 3, 5, 7, 9, 11, 12, 14tgldim0cgr 28486 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐷) = (𝐹 𝐻))
16 tgifscgr.6 . . . . 5 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
1716ad2antrr 726 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐾 𝐻))
184ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
19 tgbtwncgr.c . . . . . . 7 (𝜑𝐶𝑃)
2019ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶𝑃)
216ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵𝑃)
22 tgifscgr.1 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
2322ad2antrr 726 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
24 simpr 484 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶)
2524oveq1d 7384 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐶) = (𝐶𝐼𝐶))
2623, 25eleqtrd 2830 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶))
271, 2, 3, 18, 20, 21, 26axtgbtwnid 28447 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶 = 𝐵)
2827oveq1d 7384 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐵 𝐷))
29 tgifscgr.g . . . . . . 7 (𝜑𝐾𝑃)
3029ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾𝑃)
3110ad2antrr 726 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹𝑃)
32 tgifscgr.2 . . . . . . . 8 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
3332ad2antrr 726 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐸𝐼𝐾))
34 tgifscgr.e . . . . . . . . . 10 (𝜑𝐸𝑃)
3534ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸𝑃)
36 tgbtwncgr.a . . . . . . . . . 10 (𝜑𝐴𝑃)
3736ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴𝑃)
3824oveq2d 7385 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐴) = (𝐴 𝐶))
39 tgifscgr.3 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
4039ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐶) = (𝐸 𝐾))
4138, 40eqtr2d 2765 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸 𝐾) = (𝐴 𝐴))
421, 2, 3, 18, 35, 30, 37, 41axtgcgrid 28444 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸 = 𝐾)
4342oveq1d 7384 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸𝐼𝐾) = (𝐾𝐼𝐾))
4433, 43eleqtrd 2830 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐾𝐼𝐾))
451, 2, 3, 18, 30, 31, 44axtgbtwnid 28447 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾 = 𝐹)
4645oveq1d 7384 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐾 𝐻) = (𝐹 𝐻))
4717, 28, 463eqtr3d 2772 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
484ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐺 ∈ TarskiG)
4948ad2antrr 726 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐺 ∈ TarskiG)
5049ad2antrr 726 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐺 ∈ TarskiG)
51 simp-4r 783 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝑃)
5219ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐶𝑃)
5352ad2antrr 726 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐶𝑃)
5453ad2antrr 726 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑃)
556ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵𝑃)
56 simplr 768 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑓𝑃)
5729ad4antr 732 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐾𝑃)
5857ad2antrr 726 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾𝑃)
5910ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹𝑃)
608ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐷𝑃)
6113ad6antr 736 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐻𝑃)
62 simpllr 775 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
6362simprd 495 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑒)
6463necomd 2980 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝐶)
6536ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐴𝑃)
6665ad4antr 732 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝑃)
6722ad6antr 736 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵 ∈ (𝐴𝐼𝐶))
6862simpld 494 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐴𝐼𝑒))
691, 2, 3, 50, 66, 55, 54, 51, 67, 68tgbtwnexch3 28475 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐵𝐼𝑒))
701, 2, 3, 50, 55, 54, 51, 69tgbtwncom 28469 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝑒𝐼𝐵))
7134ad6antr 736 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐸𝑃)
7232ad6antr 736 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹 ∈ (𝐸𝐼𝐾))
73 simprl 770 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐸𝐼𝑓))
741, 2, 3, 50, 71, 59, 58, 56, 72, 73tgbtwnexch3 28475 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐹𝐼𝑓))
751, 2, 3, 50, 59, 58, 56, 74tgbtwncom 28469 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝑓𝐼𝐹))
76 simprr 772 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐾 𝑓) = (𝐶 𝑒))
7776eqcomd 2735 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝑒) = (𝐾 𝑓))
781, 2, 3, 50, 54, 51, 58, 56, 77tgcgrcomlr 28461 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐶) = (𝑓 𝐾))
79 tgifscgr.4 . . . . . . . 8 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
8079ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐶) = (𝐹 𝐾))
811, 2, 3, 50, 55, 54, 59, 58, 80tgcgrcomlr 28461 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐵) = (𝐾 𝐹))
82 simp-5r 785 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝐶)
8339ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐶) = (𝐸 𝐾))
84 tgifscgr.5 . . . . . . . 8 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
8584ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐷) = (𝐸 𝐻))
8616ad6antr 736 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐷) = (𝐾 𝐻))
871, 2, 3, 50, 66, 54, 51, 71, 58, 56, 60, 61, 82, 68, 73, 83, 77, 85, 86axtg5seg 28446 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐷) = (𝑓 𝐻))
881, 2, 3, 50, 51, 54, 55, 56, 58, 59, 60, 61, 64, 70, 75, 78, 81, 87, 86axtg5seg 28446 . . . . 5 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐷) = (𝐹 𝐻))
8934ad4antr 732 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐸𝑃)
90 simplr 768 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝑒𝑃)
911, 2, 3, 49, 89, 57, 53, 90axtgsegcon 28445 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → ∃𝑓𝑃 (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒)))
9288, 91r19.29a 3141 . . . 4 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → (𝐵 𝐷) = (𝐹 𝐻))
93 simplr 768 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 2 ≤ (♯‘𝑃))
941, 2, 3, 48, 65, 52, 93tgbtwndiff 28487 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → ∃𝑒𝑃 (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
9592, 94r19.29a 3141 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
9647, 95pm2.61dane 3012 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 𝐷) = (𝐹 𝐻))
971, 36tgldimor 28483 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
9815, 96, 97mpjaodan 960 1 (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  1c1 11047  cle 11187  2c2 12219  chash 14273  Basecbs 17156  distcds 17206  TarskiGcstrkg 28408  Itvcitv 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-n0 12421  df-xnn0 12494  df-z 12508  df-uz 12772  df-fz 13447  df-hash 14274  df-trkgc 28429  df-trkgb 28430  df-trkgcb 28431  df-trkg 28434
This theorem is referenced by:  tgcgrsub  28490  tgbtwnxfr  28511  tgfscgr  28549  tgbtwnconn1lem3  28555  miriso  28651  krippenlem  28671  midexlem  28673  colperpexlem1  28711  opphllem  28716
  Copyright terms: Public domain W3C validator