MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgifscgr Structured version   Visualization version   GIF version

Theorem tgifscgr 26773
Description: Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐾, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐾. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.)
Hypotheses
Ref Expression
tgbtwncgr.p 𝑃 = (Base‘𝐺)
tgbtwncgr.m = (dist‘𝐺)
tgbtwncgr.i 𝐼 = (Itv‘𝐺)
tgbtwncgr.g (𝜑𝐺 ∈ TarskiG)
tgbtwncgr.a (𝜑𝐴𝑃)
tgbtwncgr.b (𝜑𝐵𝑃)
tgbtwncgr.c (𝜑𝐶𝑃)
tgbtwncgr.d (𝜑𝐷𝑃)
tgifscgr.e (𝜑𝐸𝑃)
tgifscgr.f (𝜑𝐹𝑃)
tgifscgr.g (𝜑𝐾𝑃)
tgifscgr.h (𝜑𝐻𝑃)
tgifscgr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgifscgr.2 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
tgifscgr.3 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
tgifscgr.4 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
tgifscgr.5 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
tgifscgr.6 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
Assertion
Ref Expression
tgifscgr (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))

Proof of Theorem tgifscgr
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwncgr.p . . 3 𝑃 = (Base‘𝐺)
2 tgbtwncgr.m . . 3 = (dist‘𝐺)
3 tgbtwncgr.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwncgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
6 tgbtwncgr.b . . . 4 (𝜑𝐵𝑃)
76adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
8 tgbtwncgr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgifscgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 484 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
13 tgifscgr.h . . . 4 (𝜑𝐻𝑃)
1413adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐻𝑃)
151, 2, 3, 5, 7, 9, 11, 12, 14tgldim0cgr 26770 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐷) = (𝐹 𝐻))
16 tgifscgr.6 . . . . 5 (𝜑 → (𝐶 𝐷) = (𝐾 𝐻))
1716ad2antrr 722 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐾 𝐻))
184ad2antrr 722 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
19 tgbtwncgr.c . . . . . . 7 (𝜑𝐶𝑃)
2019ad2antrr 722 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶𝑃)
216ad2antrr 722 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵𝑃)
22 tgifscgr.1 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
2322ad2antrr 722 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
24 simpr 484 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶)
2524oveq1d 7270 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐶) = (𝐶𝐼𝐶))
2623, 25eleqtrd 2841 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶))
271, 2, 3, 18, 20, 21, 26axtgbtwnid 26731 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐶 = 𝐵)
2827oveq1d 7270 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐶 𝐷) = (𝐵 𝐷))
29 tgifscgr.g . . . . . . 7 (𝜑𝐾𝑃)
3029ad2antrr 722 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾𝑃)
3110ad2antrr 722 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹𝑃)
32 tgifscgr.2 . . . . . . . 8 (𝜑𝐹 ∈ (𝐸𝐼𝐾))
3332ad2antrr 722 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐸𝐼𝐾))
34 tgifscgr.e . . . . . . . . . 10 (𝜑𝐸𝑃)
3534ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸𝑃)
36 tgbtwncgr.a . . . . . . . . . 10 (𝜑𝐴𝑃)
3736ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐴𝑃)
3824oveq2d 7271 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐴) = (𝐴 𝐶))
39 tgifscgr.3 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐶) = (𝐸 𝐾))
4039ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐴 𝐶) = (𝐸 𝐾))
4138, 40eqtr2d 2779 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸 𝐾) = (𝐴 𝐴))
421, 2, 3, 18, 35, 30, 37, 41axtgcgrid 26728 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐸 = 𝐾)
4342oveq1d 7270 . . . . . . 7 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐸𝐼𝐾) = (𝐾𝐼𝐾))
4433, 43eleqtrd 2841 . . . . . 6 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐹 ∈ (𝐾𝐼𝐾))
451, 2, 3, 18, 30, 31, 44axtgbtwnid 26731 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → 𝐾 = 𝐹)
4645oveq1d 7270 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐾 𝐻) = (𝐹 𝐻))
4717, 28, 463eqtr3d 2786 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴 = 𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
484ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐺 ∈ TarskiG)
4948ad2antrr 722 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐺 ∈ TarskiG)
5049ad2antrr 722 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐺 ∈ TarskiG)
51 simp-4r 780 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝑃)
5219ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐶𝑃)
5352ad2antrr 722 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐶𝑃)
5453ad2antrr 722 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑃)
556ad6antr 732 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵𝑃)
56 simplr 765 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑓𝑃)
5729ad4antr 728 . . . . . . 7 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐾𝑃)
5857ad2antrr 722 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾𝑃)
5910ad6antr 732 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹𝑃)
608ad6antr 732 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐷𝑃)
6113ad6antr 732 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐻𝑃)
62 simpllr 772 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
6362simprd 495 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶𝑒)
6463necomd 2998 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝑒𝐶)
6536ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 𝐴𝑃)
6665ad4antr 728 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝑃)
6722ad6antr 732 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐵 ∈ (𝐴𝐼𝐶))
6862simpld 494 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐴𝐼𝑒))
691, 2, 3, 50, 66, 55, 54, 51, 67, 68tgbtwnexch3 26759 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝐵𝐼𝑒))
701, 2, 3, 50, 55, 54, 51, 69tgbtwncom 26753 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐶 ∈ (𝑒𝐼𝐵))
7134ad6antr 732 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐸𝑃)
7232ad6antr 732 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐹 ∈ (𝐸𝐼𝐾))
73 simprl 767 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐸𝐼𝑓))
741, 2, 3, 50, 71, 59, 58, 56, 72, 73tgbtwnexch3 26759 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝐹𝐼𝑓))
751, 2, 3, 50, 59, 58, 56, 74tgbtwncom 26753 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐾 ∈ (𝑓𝐼𝐹))
76 simprr 769 . . . . . . . 8 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐾 𝑓) = (𝐶 𝑒))
7776eqcomd 2744 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝑒) = (𝐾 𝑓))
781, 2, 3, 50, 54, 51, 58, 56, 77tgcgrcomlr 26745 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐶) = (𝑓 𝐾))
79 tgifscgr.4 . . . . . . . 8 (𝜑 → (𝐵 𝐶) = (𝐹 𝐾))
8079ad6antr 732 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐶) = (𝐹 𝐾))
811, 2, 3, 50, 55, 54, 59, 58, 80tgcgrcomlr 26745 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐵) = (𝐾 𝐹))
82 simp-5r 782 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → 𝐴𝐶)
8339ad6antr 732 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐶) = (𝐸 𝐾))
84 tgifscgr.5 . . . . . . . 8 (𝜑 → (𝐴 𝐷) = (𝐸 𝐻))
8584ad6antr 732 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐴 𝐷) = (𝐸 𝐻))
8616ad6antr 732 . . . . . . 7 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐶 𝐷) = (𝐾 𝐻))
871, 2, 3, 50, 66, 54, 51, 71, 58, 56, 60, 61, 82, 68, 73, 83, 77, 85, 86axtg5seg 26730 . . . . . 6 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝑒 𝐷) = (𝑓 𝐻))
881, 2, 3, 50, 51, 54, 55, 56, 58, 59, 60, 61, 64, 70, 75, 78, 81, 87, 86axtg5seg 26730 . . . . 5 (((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) ∧ 𝑓𝑃) ∧ (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒))) → (𝐵 𝐷) = (𝐹 𝐻))
8934ad4antr 728 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝐸𝑃)
90 simplr 765 . . . . . 6 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → 𝑒𝑃)
911, 2, 3, 49, 89, 57, 53, 90axtgsegcon 26729 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → ∃𝑓𝑃 (𝐾 ∈ (𝐸𝐼𝑓) ∧ (𝐾 𝑓) = (𝐶 𝑒)))
9288, 91r19.29a 3217 . . . 4 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) ∧ 𝑒𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒)) → (𝐵 𝐷) = (𝐹 𝐻))
93 simplr 765 . . . . 5 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → 2 ≤ (♯‘𝑃))
941, 2, 3, 48, 65, 52, 93tgbtwndiff 26771 . . . 4 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → ∃𝑒𝑃 (𝐶 ∈ (𝐴𝐼𝑒) ∧ 𝐶𝑒))
9592, 94r19.29a 3217 . . 3 (((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐴𝐶) → (𝐵 𝐷) = (𝐹 𝐻))
9647, 95pm2.61dane 3031 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 𝐷) = (𝐹 𝐻))
971, 36tgldimor 26767 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
9815, 96, 97mpjaodan 955 1 (𝜑 → (𝐵 𝐷) = (𝐹 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803  cle 10941  2c2 11958  chash 13972  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgcgrsub  26774  tgbtwnxfr  26795  tgfscgr  26833  tgbtwnconn1lem3  26839  miriso  26935  krippenlem  26955  midexlem  26957  colperpexlem1  26995  opphllem  27000
  Copyright terms: Public domain W3C validator