MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlpasch Structured version   Visualization version   GIF version

Theorem hlpasch 28727
Description: An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
Hypotheses
Ref Expression
hlpasch.p 𝑃 = (Base‘𝐺)
hlpasch.i 𝐼 = (Itv‘𝐺)
hlpasch.k 𝐾 = (hlG‘𝐺)
hlpasch.g (𝜑𝐺 ∈ TarskiG)
hlpasch.1 (𝜑𝐴𝑃)
hlpasch.2 (𝜑𝐵𝑃)
hlpasch.3 (𝜑𝐶𝑃)
hlpasch.4 (𝜑𝑋𝑃)
hlpasch.5 (𝜑𝐷𝑃)
hlpasch.6 (𝜑𝐴𝐵)
hlpasch.7 (𝜑𝐶(𝐾𝐵)𝐷)
hlpasch.8 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
Assertion
Ref Expression
hlpasch (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐺   𝑒,𝐼   𝑒,𝐾   𝑃,𝑒   𝑒,𝑋   𝜑,𝑒

Proof of Theorem hlpasch
StepHypRef Expression
1 hlpasch.p . . . 4 𝑃 = (Base‘𝐺)
2 hlpasch.i . . . 4 𝐼 = (Itv‘𝐺)
3 eqid 2730 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
4 hlpasch.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 hlpasch.5 . . . . 5 (𝜑𝐷𝑃)
76adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
8 hlpasch.4 . . . . 5 (𝜑𝑋𝑃)
98adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝑋𝑃)
10 hlpasch.3 . . . . 5 (𝜑𝐶𝑃)
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
12 hlpasch.2 . . . . 5 (𝜑𝐵𝑃)
1312adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
14 hlpasch.1 . . . . 5 (𝜑𝐴𝑃)
1514adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴𝑃)
16 eqid 2730 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
17 simpr 484 . . . . 5 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
181, 16, 2, 5, 13, 11, 7, 17tgbtwncom 28459 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵))
19 hlpasch.8 . . . . 5 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
2019adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ (𝑋𝐼𝐶))
211, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20outpasch 28726 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)))
22 hlpasch.k . . . . . . 7 𝐾 = (hlG‘𝐺)
23 simplr 768 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝑃)
2413ad2antrr 726 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐵𝑃)
2515ad2antrr 726 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝑃)
265ad2antrr 726 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐺 ∈ TarskiG)
27 simprr 772 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝐵𝐼𝑒))
281, 16, 2, 26, 24, 25, 23, 27tgbtwncom 28459 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝑒𝐼𝐵))
2926adantr 480 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
3024adantr 480 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
3125adantr 480 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝑃)
32 simplrr 777 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝑒))
33 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
3433oveq2d 7357 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → (𝐵𝐼𝑒) = (𝐵𝐼𝐵))
3532, 34eleqtrd 2831 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
361, 16, 2, 29, 30, 31, 35axtgbtwnid 28437 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐴)
3736eqcomd 2736 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 = 𝐵)
38 hlpasch.6 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3938ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝐵)
4039adantr 480 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝐵)
4140neneqd 2931 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → ¬ 𝐴 = 𝐵)
4237, 41pm2.65da 816 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → ¬ 𝑒 = 𝐵)
4342neqned 2933 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝐵)
441, 2, 22, 23, 24, 25, 26, 25, 28, 43, 39btwnhl2 28584 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴(𝐾𝐵)𝑒)
457ad2antrr 726 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐷𝑃)
469ad2antrr 726 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑋𝑃)
47 simprl 770 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝐷𝐼𝑋))
481, 16, 2, 26, 45, 23, 46, 47tgbtwncom 28459 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝑋𝐼𝐷))
4944, 48jca 511 . . . . 5 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
5049ex 412 . . . 4 (((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5150reximdva 3143 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5221, 51mpd 15 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
536ad2antrr 726 . . . . . 6 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐷𝑃)
5453adantr 480 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷𝑃)
55 simpr 484 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
5655breq2d 5101 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
5755eleq1d 2814 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
5856, 57anbi12d 632 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
5914ad2antrr 726 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝑃)
6059adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝑃)
6112ad2antrr 726 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐵𝑃)
6261adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐵𝑃)
634ad2antrr 726 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
6463adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐺 ∈ TarskiG)
65 hlpasch.7 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐷)
661, 2, 22, 10, 6, 12, 4, 65hlcomd 28575 . . . . . . . . 9 (𝜑𝐷(𝐾𝐵)𝐶)
6766ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐶)
6810adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
6968ad2antrr 726 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝑃)
7019adantr 480 . . . . . . . . . . 11 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝑋𝐼𝐶))
7170ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
72 simpr 484 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵)
7372oveq1d 7356 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝑋𝐼𝐶) = (𝐵𝐼𝐶))
7471, 73eleqtrd 2831 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐶))
751, 2, 22, 10, 6, 12, 4ishlg 28573 . . . . . . . . . . . 12 (𝜑 → (𝐶(𝐾𝐵)𝐷 ↔ (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))))
7665, 75mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))))
7776simp1d 1142 . . . . . . . . . 10 (𝜑𝐶𝐵)
7877ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝐵)
7938ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝐵)
8079adantr 480 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝐵)
811, 2, 22, 54, 69, 62, 64, 60, 74, 78, 80hlbtwn 28582 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐷(𝐾𝐵)𝐶𝐷(𝐾𝐵)𝐴))
8267, 81mpbid 232 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐴)
831, 2, 22, 54, 60, 62, 64, 82hlcomd 28575 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
848ad2antrr 726 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋𝑃)
8584adantr 480 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋𝑃)
861, 16, 2, 64, 85, 54tgbtwntriv2 28458 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ (𝑋𝐼𝐷))
8783, 86jca 511 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
8854, 58, 87rspcedvd 3577 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
8984ad2antrr 726 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋𝑃)
90 simpr 484 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
9190breq2d 5101 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝑋))
9290eleq1d 2814 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝑋 ∈ (𝑋𝐼𝐷)))
9391, 92anbi12d 632 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
9493ad4ant14 752 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
95 simpr 484 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝑋)
961, 16, 2, 63, 84, 53tgbtwntriv1 28462 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ (𝑋𝐼𝐷))
9796ad2antrr 726 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋 ∈ (𝑋𝐼𝐷))
9895, 97jca 511 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷)))
9989, 94, 98rspcedvd 3577 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
10053ad2antrr 726 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝑃)
101 simpr 484 . . . . . . . 8 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
102101breq2d 5101 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
103101eleq1d 2814 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
104102, 103anbi12d 632 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
10579ad2antrr 726 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝐵)
1061, 2, 22, 10, 6, 12, 4, 65hlne2 28577 . . . . . . . . 9 (𝜑𝐷𝐵)
107106ad4antr 732 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝐵)
10863ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐺 ∈ TarskiG)
10961ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵𝑃)
11059ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝑃)
11168ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐶𝑃)
112111adantr 480 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐶𝑃)
11384ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝑋𝑃)
114 simpr 484 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ (𝑋𝐼𝐴))
11570ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
116115adantr 480 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝑋𝐼𝐶))
1171, 16, 2, 108, 113, 109, 110, 112, 114, 116tgbtwnexch3 28465 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝐵𝐼𝐶))
118 simp-4r 783 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
1191, 2, 108, 109, 110, 100, 112, 117, 118tgbtwnconn3 28548 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))
1201, 2, 22, 14, 6, 12, 4ishlg 28573 . . . . . . . . 9 (𝜑 → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
121120ad4antr 732 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
122105, 107, 119, 121mpbir3and 1343 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴(𝐾𝐵)𝐷)
1231, 16, 2, 108, 113, 100tgbtwntriv2 28458 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝑋𝐼𝐷))
124122, 123jca 511 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
125100, 104, 124rspcedvd 3577 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1268ad3antrrr 730 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝑃)
12712ad3antrrr 730 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝑃)
12814ad3antrrr 730 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴𝑃)
1294ad3antrrr 730 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
130 simpr 484 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝐵)
131130neneqd 2931 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ¬ 𝑋 = 𝐵)
13263adantr 480 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
133132adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐺 ∈ TarskiG)
134126adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋𝑃)
135128adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴𝑃)
136115adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝐶))
137 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐶)
138137oveq2d 7357 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝑋𝐼𝑋) = (𝑋𝐼𝐶))
139136, 138eleqtrrd 2832 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝑋))
1401, 16, 2, 133, 134, 135, 139axtgbtwnid 28437 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐴)
141140olcd 874 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
142132adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐺 ∈ TarskiG)
143127adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵𝑃)
144111adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑃)
145126adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝑃)
146128adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐴𝑃)
147 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝐶)
148147necomd 2981 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑋)
149148neneqd 2931 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → ¬ 𝐶 = 𝑋)
15053adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝑃)
151106ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝐵)
152 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
1531, 2, 3, 132, 150, 127, 126, 151, 152lncom 28593 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐷(LineG‘𝐺)𝐵))
15477necomd 2981 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵𝐶)
155154ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝐶)
15666ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷(𝐾𝐵)𝐶)
1571, 2, 22, 150, 111, 127, 132, 3, 156hlln 28578 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐶(LineG‘𝐺)𝐵))
1581, 2, 3, 132, 127, 111, 150, 155, 157lncom 28593 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐶))
159158orcd 873 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐷 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1601, 2, 3, 132, 126, 150, 127, 111, 153, 159coltr 28618 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1611, 3, 2, 132, 127, 111, 126, 160colrot1 28530 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝐶(LineG‘𝐺)𝑋) ∨ 𝐶 = 𝑋))
162161orcomd 871 . . . . . . . . . . . . . . . 16 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
163162adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
164163ord 864 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (¬ 𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
165149, 164mpd 15 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))
1661, 3, 2, 132, 126, 128, 111, 115btwncolg3 28528 . . . . . . . . . . . . . 14 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
167166adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1681, 2, 3, 142, 143, 144, 145, 146, 165, 167coltr 28618 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
169141, 168pm2.61dane 3013 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1701, 3, 2, 132, 126, 128, 127, 169colrot2 28531 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝐵(LineG‘𝐺)𝑋) ∨ 𝐵 = 𝑋))
1711, 3, 2, 132, 127, 126, 128, 170colcom 28529 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
172171orcomd 871 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
173172ord 864 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (¬ 𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
174131, 173mpd 15 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))
1751, 2, 22, 126, 127, 128, 129, 128, 3, 174lnhl 28586 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴(𝐾𝐵)𝑋𝐵 ∈ (𝑋𝐼𝐴)))
17699, 125, 175mpjaodan 960 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
17788, 176pm2.61dane 3013 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1784adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
1798adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝑋𝑃)
18012adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
18114adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴𝑃)
1826adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
183 simpr 484 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
1841, 16, 2, 178, 179, 180, 68, 181, 182, 70, 183axtgpasch 28438 . . . . 5 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
185184adantr 480 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
186 simplr 768 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝑃)
187181ad3antrrr 730 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴𝑃)
188180ad3antrrr 730 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝑃)
189178ad3antrrr 730 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐺 ∈ TarskiG)
190 simprl 770 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐴𝐼𝐵))
1911, 16, 2, 189, 187, 186, 188, 190tgbtwncom 28459 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐵𝐼𝐴))
19238necomd 2981 . . . . . . . . . 10 (𝜑𝐵𝐴)
193192ad4antr 732 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝐴)
194189adantr 480 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
1956ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑃)
1968ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑋𝑃)
197188adantr 480 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
198 simp-4r 783 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
199106necomd 2981 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐷)
200199ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
201200neneqd 2931 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐵 = 𝐷)
202 ioran 985 . . . . . . . . . . . . . 14 (¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷) ↔ (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷))
203198, 201, 202sylanbrc 583 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷))
2041, 3, 2, 194, 197, 195, 196, 203ncolrot2 28534 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝐷 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
205 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
206186adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒𝑃)
2071, 2, 3, 194, 195, 196, 197, 204ncolne1 28596 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑋)
208 simplrr 777 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷𝐼𝑋))
2091, 2, 3, 194, 195, 196, 206, 207, 208btwnlng1 28590 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷(LineG‘𝐺)𝑋))
210205, 209eqeltrrd 2830 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐷(LineG‘𝐺)𝑋))
2111, 2, 3, 194, 195, 196, 207tglinerflx1 28604 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐷(LineG‘𝐺)𝑋))
212106ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝐵)
213212necomd 2981 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
2141, 2, 3, 194, 197, 195, 213tglinerflx1 28604 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐵(LineG‘𝐺)𝐷))
2151, 2, 3, 194, 197, 195, 213tglinerflx2 28605 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐷))
2161, 2, 3, 194, 195, 196, 197, 195, 204, 210, 211, 214, 215tglineinteq 28616 . . . . . . . . . . 11 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐷)
217216, 201pm2.65da 816 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → ¬ 𝑒 = 𝐵)
218217neqned 2933 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝐵)
2191, 2, 22, 188, 187, 186, 189, 187, 191, 193, 218btwnhl1 28583 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒(𝐾𝐵)𝐴)
2201, 2, 22, 186, 187, 188, 189, 219hlcomd 28575 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴(𝐾𝐵)𝑒)
221178ad3antrrr 730 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐺 ∈ TarskiG)
222182ad3antrrr 730 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐷𝑃)
223 simplr 768 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒𝑃)
224179ad3antrrr 730 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑋𝑃)
225 simpr 484 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝐷𝐼𝑋))
2261, 16, 2, 221, 222, 223, 224, 225tgbtwncom 28459 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝑋𝐼𝐷))
227226adantrl 716 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝑋𝐼𝐷))
228220, 227jca 511 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
229228ex 412 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
230229reximdva 3143 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
231185, 230mpd 15 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
232177, 231pm2.61dan 812 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
23376simp3d 1144 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
23452, 232, 233mpjaodan 960 1 (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wrex 3054   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  distcds 17162  TarskiGcstrkg 28398  Itvcitv 28404  LineGclng 28405  hlGchlg 28571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-s2 14747  df-s3 14748  df-trkgc 28419  df-trkgb 28420  df-trkgcb 28421  df-trkgld 28423  df-trkg 28424  df-cgrg 28482  df-leg 28554  df-hlg 28572  df-mir 28624  df-rag 28665  df-perpg 28667
This theorem is referenced by:  inaghl  28816
  Copyright terms: Public domain W3C validator