Proof of Theorem hlpasch
| Step | Hyp | Ref
| Expression |
| 1 | | hlpasch.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | hlpasch.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
| 3 | | eqid 2737 |
. . . 4
⊢
(LineG‘𝐺) =
(LineG‘𝐺) |
| 4 | | hlpasch.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG) |
| 6 | | hlpasch.5 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷 ∈ 𝑃) |
| 8 | | hlpasch.4 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝑋 ∈ 𝑃) |
| 10 | | hlpasch.3 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ 𝑃) |
| 12 | | hlpasch.2 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵 ∈ 𝑃) |
| 14 | | hlpasch.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ 𝑃) |
| 16 | | eqid 2737 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 17 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷)) |
| 18 | 1, 16, 2, 5, 13, 11, 7, 17 | tgbtwncom 28496 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵)) |
| 19 | | hlpasch.8 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼𝐶)) |
| 20 | 19 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ (𝑋𝐼𝐶)) |
| 21 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20 | outpasch 28763 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) |
| 22 | | hlpasch.k |
. . . . . . 7
⊢ 𝐾 = (hlG‘𝐺) |
| 23 | | simplr 769 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ 𝑃) |
| 24 | 13 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐵 ∈ 𝑃) |
| 25 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ 𝑃) |
| 26 | 5 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐺 ∈ TarskiG) |
| 27 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝐵𝐼𝑒)) |
| 28 | 1, 16, 2, 26, 24, 25, 23, 27 | tgbtwncom 28496 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝑒𝐼𝐵)) |
| 29 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG) |
| 30 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ 𝑃) |
| 31 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ 𝑃) |
| 32 | | simplrr 778 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝑒)) |
| 33 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵) |
| 34 | 33 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → (𝐵𝐼𝑒) = (𝐵𝐼𝐵)) |
| 35 | 32, 34 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
| 36 | 1, 16, 2, 29, 30, 31, 35 | axtgbtwnid 28474 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐴) |
| 37 | 36 | eqcomd 2743 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 = 𝐵) |
| 38 | | hlpasch.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 39 | 38 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ≠ 𝐵) |
| 40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ≠ 𝐵) |
| 41 | 40 | neneqd 2945 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → ¬ 𝐴 = 𝐵) |
| 42 | 37, 41 | pm2.65da 817 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → ¬ 𝑒 = 𝐵) |
| 43 | 42 | neqned 2947 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ≠ 𝐵) |
| 44 | 1, 2, 22, 23, 24, 25, 26, 25, 28, 43, 39 | btwnhl2 28621 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴(𝐾‘𝐵)𝑒) |
| 45 | 7 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐷 ∈ 𝑃) |
| 46 | 9 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑋 ∈ 𝑃) |
| 47 | | simprl 771 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝐷𝐼𝑋)) |
| 48 | 1, 16, 2, 26, 45, 23, 46, 47 | tgbtwncom 28496 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝑋𝐼𝐷)) |
| 49 | 44, 48 | jca 511 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 50 | 49 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) → ((𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
| 51 | 50 | reximdva 3168 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → (∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
| 52 | 21, 51 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 53 | 6 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐷 ∈ 𝑃) |
| 54 | 53 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ 𝑃) |
| 55 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷) |
| 56 | 55 | breq2d 5155 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝐴(𝐾‘𝐵)𝑒 ↔ 𝐴(𝐾‘𝐵)𝐷)) |
| 57 | 55 | eleq1d 2826 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷))) |
| 58 | 56, 57 | anbi12d 632 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷)))) |
| 59 | 14 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴 ∈ 𝑃) |
| 60 | 59 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ 𝑃) |
| 61 | 12 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐵 ∈ 𝑃) |
| 62 | 61 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐵 ∈ 𝑃) |
| 63 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG) |
| 64 | 63 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐺 ∈ TarskiG) |
| 65 | | hlpasch.7 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐷) |
| 66 | 1, 2, 22, 10, 6, 12, 4, 65 | hlcomd 28612 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷(𝐾‘𝐵)𝐶) |
| 67 | 66 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾‘𝐵)𝐶) |
| 68 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶 ∈ 𝑃) |
| 69 | 68 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶 ∈ 𝑃) |
| 70 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝑋𝐼𝐶)) |
| 71 | 70 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶)) |
| 72 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵) |
| 73 | 72 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝑋𝐼𝐶) = (𝐵𝐼𝐶)) |
| 74 | 71, 73 | eleqtrd 2843 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐶)) |
| 75 | 1, 2, 22, 10, 6, 12, 4 | ishlg 28610 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐷 ↔ (𝐶 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))))) |
| 76 | 65, 75 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))) |
| 77 | 76 | simp1d 1143 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 78 | 77 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶 ≠ 𝐵) |
| 79 | 38 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴 ≠ 𝐵) |
| 80 | 79 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ≠ 𝐵) |
| 81 | 1, 2, 22, 54, 69, 62, 64, 60, 74, 78, 80 | hlbtwn 28619 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐷(𝐾‘𝐵)𝐶 ↔ 𝐷(𝐾‘𝐵)𝐴)) |
| 82 | 67, 81 | mpbid 232 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾‘𝐵)𝐴) |
| 83 | 1, 2, 22, 54, 60, 62, 64, 82 | hlcomd 28612 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴(𝐾‘𝐵)𝐷) |
| 84 | 8 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ 𝑃) |
| 85 | 84 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 ∈ 𝑃) |
| 86 | 1, 16, 2, 64, 85, 54 | tgbtwntriv2 28495 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ (𝑋𝐼𝐷)) |
| 87 | 83, 86 | jca 511 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷))) |
| 88 | 54, 58, 87 | rspcedvd 3624 |
. . . 4
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 89 | 84 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → 𝑋 ∈ 𝑃) |
| 90 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) |
| 91 | 90 | breq2d 5155 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝐴(𝐾‘𝐵)𝑒 ↔ 𝐴(𝐾‘𝐵)𝑋)) |
| 92 | 90 | eleq1d 2826 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝑋 ∈ (𝑋𝐼𝐷))) |
| 93 | 91, 92 | anbi12d 632 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝑋 ∧ 𝑋 ∈ (𝑋𝐼𝐷)))) |
| 94 | 93 | ad4ant14 752 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝑋 ∧ 𝑋 ∈ (𝑋𝐼𝐷)))) |
| 95 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → 𝐴(𝐾‘𝐵)𝑋) |
| 96 | 1, 16, 2, 63, 84, 53 | tgbtwntriv1 28499 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ (𝑋𝐼𝐷)) |
| 97 | 96 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → 𝑋 ∈ (𝑋𝐼𝐷)) |
| 98 | 95, 97 | jca 511 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → (𝐴(𝐾‘𝐵)𝑋 ∧ 𝑋 ∈ (𝑋𝐼𝐷))) |
| 99 | 89, 94, 98 | rspcedvd 3624 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 100 | 53 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ 𝑃) |
| 101 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷) |
| 102 | 101 | breq2d 5155 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝐴(𝐾‘𝐵)𝑒 ↔ 𝐴(𝐾‘𝐵)𝐷)) |
| 103 | 101 | eleq1d 2826 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷))) |
| 104 | 102, 103 | anbi12d 632 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷)))) |
| 105 | 79 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ≠ 𝐵) |
| 106 | 1, 2, 22, 10, 6, 12, 4, 65 | hlne2 28614 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ≠ 𝐵) |
| 107 | 106 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ≠ 𝐵) |
| 108 | 63 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐺 ∈ TarskiG) |
| 109 | 61 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ 𝑃) |
| 110 | 59 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ 𝑃) |
| 111 | 68 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐶 ∈ 𝑃) |
| 112 | 111 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐶 ∈ 𝑃) |
| 113 | 84 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝑋 ∈ 𝑃) |
| 114 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ (𝑋𝐼𝐴)) |
| 115 | 70 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶)) |
| 116 | 115 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝑋𝐼𝐶)) |
| 117 | 1, 16, 2, 108, 113, 109, 110, 112, 114, 116 | tgbtwnexch3 28502 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
| 118 | | simp-4r 784 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
| 119 | 1, 2, 108, 109, 110, 100, 112, 117, 118 | tgbtwnconn3 28585 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))) |
| 120 | 1, 2, 22, 14, 6, 12, 4 | ishlg 28610 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(𝐾‘𝐵)𝐷 ↔ (𝐴 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))))) |
| 121 | 120 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾‘𝐵)𝐷 ↔ (𝐴 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))))) |
| 122 | 105, 107,
119, 121 | mpbir3and 1343 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴(𝐾‘𝐵)𝐷) |
| 123 | 1, 16, 2, 108, 113, 100 | tgbtwntriv2 28495 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝑋𝐼𝐷)) |
| 124 | 122, 123 | jca 511 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷))) |
| 125 | 100, 104,
124 | rspcedvd 3624 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 126 | 8 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ∈ 𝑃) |
| 127 | 12 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
| 128 | 14 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
| 129 | 4 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
| 130 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ≠ 𝐵) |
| 131 | 130 | neneqd 2945 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → ¬ 𝑋 = 𝐵) |
| 132 | 63 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
| 133 | 132 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐺 ∈ TarskiG) |
| 134 | 126 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝑋 ∈ 𝑃) |
| 135 | 128 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ 𝑃) |
| 136 | 115 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝐶)) |
| 137 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐶) |
| 138 | 137 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → (𝑋𝐼𝑋) = (𝑋𝐼𝐶)) |
| 139 | 136, 138 | eleqtrrd 2844 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝑋)) |
| 140 | 1, 16, 2, 133, 134, 135, 139 | axtgbtwnid 28474 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐴) |
| 141 | 140 | olcd 875 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
| 142 | 132 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
| 143 | 127 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
| 144 | 111 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
| 145 | 126 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝑋 ∈ 𝑃) |
| 146 | 128 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
| 147 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝑋 ≠ 𝐶) |
| 148 | 147 | necomd 2996 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐶 ≠ 𝑋) |
| 149 | 148 | neneqd 2945 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → ¬ 𝐶 = 𝑋) |
| 150 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ∈ 𝑃) |
| 151 | 106 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ≠ 𝐵) |
| 152 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) |
| 153 | 1, 2, 3, 132, 150, 127, 126, 151, 152 | lncom 28630 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ∈ (𝐷(LineG‘𝐺)𝐵)) |
| 154 | 77 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 155 | 154 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐵 ≠ 𝐶) |
| 156 | 66 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷(𝐾‘𝐵)𝐶) |
| 157 | 1, 2, 22, 150, 111, 127, 132, 3, 156 | hlln 28615 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ∈ (𝐶(LineG‘𝐺)𝐵)) |
| 158 | 1, 2, 3, 132, 127, 111, 150, 155, 157 | lncom 28630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐶)) |
| 159 | 158 | orcd 874 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐷 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶)) |
| 160 | 1, 2, 3, 132, 126, 150, 127, 111, 153, 159 | coltr 28655 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶)) |
| 161 | 1, 3, 2, 132, 127, 111, 126, 160 | colrot1 28567 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐵 ∈ (𝐶(LineG‘𝐺)𝑋) ∨ 𝐶 = 𝑋)) |
| 162 | 161 | orcomd 872 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐶 = 𝑋 ∨ 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))) |
| 163 | 162 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (𝐶 = 𝑋 ∨ 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))) |
| 164 | 163 | ord 865 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (¬ 𝐶 = 𝑋 → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))) |
| 165 | 149, 164 | mpd 15 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)) |
| 166 | 1, 3, 2, 132, 126, 128, 111, 115 | btwncolg3 28565 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
| 167 | 166 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
| 168 | 1, 2, 3, 142, 143, 144, 145, 146, 165, 167 | coltr 28655 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
| 169 | 141, 168 | pm2.61dane 3029 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
| 170 | 1, 3, 2, 132, 126, 128, 127, 169 | colrot2 28568 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐴 ∈ (𝐵(LineG‘𝐺)𝑋) ∨ 𝐵 = 𝑋)) |
| 171 | 1, 3, 2, 132, 127, 126, 128, 170 | colcom 28566 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐴 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵)) |
| 172 | 171 | orcomd 872 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝑋 = 𝐵 ∨ 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))) |
| 173 | 172 | ord 865 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (¬ 𝑋 = 𝐵 → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))) |
| 174 | 131, 173 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)) |
| 175 | 1, 2, 22, 126, 127, 128, 129, 128, 3, 174 | lnhl 28623 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐴(𝐾‘𝐵)𝑋 ∨ 𝐵 ∈ (𝑋𝐼𝐴))) |
| 176 | 99, 125, 175 | mpjaodan 961 |
. . . 4
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 177 | 88, 176 | pm2.61dane 3029 |
. . 3
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 178 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG) |
| 179 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝑋 ∈ 𝑃) |
| 180 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ 𝑃) |
| 181 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ 𝑃) |
| 182 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ 𝑃) |
| 183 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
| 184 | 1, 16, 2, 178, 179, 180, 68, 181, 182, 70, 183 | axtgpasch 28475 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) |
| 185 | 184 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) |
| 186 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ 𝑃) |
| 187 | 181 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴 ∈ 𝑃) |
| 188 | 180 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵 ∈ 𝑃) |
| 189 | 178 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐺 ∈ TarskiG) |
| 190 | | simprl 771 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐴𝐼𝐵)) |
| 191 | 1, 16, 2, 189, 187, 186, 188, 190 | tgbtwncom 28496 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐵𝐼𝐴)) |
| 192 | 38 | necomd 2996 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 193 | 192 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵 ≠ 𝐴) |
| 194 | 189 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG) |
| 195 | 6 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ 𝑃) |
| 196 | 8 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑋 ∈ 𝑃) |
| 197 | 188 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ 𝑃) |
| 198 | | simp-4r 784 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) |
| 199 | 106 | necomd 2996 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ≠ 𝐷) |
| 200 | 199 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ≠ 𝐷) |
| 201 | 200 | neneqd 2945 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐵 = 𝐷) |
| 202 | | ioran 986 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷) ↔ (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷)) |
| 203 | 198, 201,
202 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷)) |
| 204 | 1, 3, 2, 194, 197, 195, 196, 203 | ncolrot2 28571 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝐷 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵)) |
| 205 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵) |
| 206 | 186 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ 𝑃) |
| 207 | 1, 2, 3, 194, 195, 196, 197, 204 | ncolne1 28633 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ≠ 𝑋) |
| 208 | | simplrr 778 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷𝐼𝑋)) |
| 209 | 1, 2, 3, 194, 195, 196, 206, 207, 208 | btwnlng1 28627 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷(LineG‘𝐺)𝑋)) |
| 210 | 205, 209 | eqeltrrd 2842 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐷(LineG‘𝐺)𝑋)) |
| 211 | 1, 2, 3, 194, 195, 196, 207 | tglinerflx1 28641 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐷(LineG‘𝐺)𝑋)) |
| 212 | 106 | ad5antr 734 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ≠ 𝐵) |
| 213 | 212 | necomd 2996 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ≠ 𝐷) |
| 214 | 1, 2, 3, 194, 197, 195, 213 | tglinerflx1 28641 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐵(LineG‘𝐺)𝐷)) |
| 215 | 1, 2, 3, 194, 197, 195, 213 | tglinerflx2 28642 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐷)) |
| 216 | 1, 2, 3, 194, 195, 196, 197, 195, 204, 210, 211, 214, 215 | tglineinteq 28653 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐷) |
| 217 | 216, 201 | pm2.65da 817 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → ¬ 𝑒 = 𝐵) |
| 218 | 217 | neqned 2947 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ≠ 𝐵) |
| 219 | 1, 2, 22, 188, 187, 186, 189, 187, 191, 193, 218 | btwnhl1 28620 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒(𝐾‘𝐵)𝐴) |
| 220 | 1, 2, 22, 186, 187, 188, 189, 219 | hlcomd 28612 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴(𝐾‘𝐵)𝑒) |
| 221 | 178 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐺 ∈ TarskiG) |
| 222 | 182 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐷 ∈ 𝑃) |
| 223 | | simplr 769 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ 𝑃) |
| 224 | 179 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑋 ∈ 𝑃) |
| 225 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝐷𝐼𝑋)) |
| 226 | 1, 16, 2, 221, 222, 223, 224, 225 | tgbtwncom 28496 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝑋𝐼𝐷)) |
| 227 | 226 | adantrl 716 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝑋𝐼𝐷)) |
| 228 | 220, 227 | jca 511 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 229 | 228 | ex 412 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) → ((𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
| 230 | 229 | reximdva 3168 |
. . . 4
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → (∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
| 231 | 185, 230 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 232 | 177, 231 | pm2.61dan 813 |
. 2
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
| 233 | 76 | simp3d 1145 |
. 2
⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
| 234 | 52, 232, 233 | mpjaodan 961 |
1
⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |