Proof of Theorem hlpasch
Step | Hyp | Ref
| Expression |
1 | | hlpasch.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
2 | | hlpasch.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
3 | | eqid 2738 |
. . . 4
⊢
(LineG‘𝐺) =
(LineG‘𝐺) |
4 | | hlpasch.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG) |
6 | | hlpasch.5 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷 ∈ 𝑃) |
8 | | hlpasch.4 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝑋 ∈ 𝑃) |
10 | | hlpasch.3 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ 𝑃) |
12 | | hlpasch.2 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
13 | 12 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵 ∈ 𝑃) |
14 | | hlpasch.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ 𝑃) |
16 | | eqid 2738 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
17 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷)) |
18 | 1, 16, 2, 5, 13, 11, 7, 17 | tgbtwncom 26753 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵)) |
19 | | hlpasch.8 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼𝐶)) |
20 | 19 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ (𝑋𝐼𝐶)) |
21 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20 | outpasch 27020 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) |
22 | | hlpasch.k |
. . . . . . 7
⊢ 𝐾 = (hlG‘𝐺) |
23 | | simplr 765 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ 𝑃) |
24 | 13 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐵 ∈ 𝑃) |
25 | 15 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ 𝑃) |
26 | 5 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐺 ∈ TarskiG) |
27 | | simprr 769 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝐵𝐼𝑒)) |
28 | 1, 16, 2, 26, 24, 25, 23, 27 | tgbtwncom 26753 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝑒𝐼𝐵)) |
29 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG) |
30 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ 𝑃) |
31 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ 𝑃) |
32 | | simplrr 774 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝑒)) |
33 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵) |
34 | 33 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → (𝐵𝐼𝑒) = (𝐵𝐼𝐵)) |
35 | 32, 34 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
36 | 1, 16, 2, 29, 30, 31, 35 | axtgbtwnid 26731 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐴) |
37 | 36 | eqcomd 2744 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 = 𝐵) |
38 | | hlpasch.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
39 | 38 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ≠ 𝐵) |
40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ≠ 𝐵) |
41 | 40 | neneqd 2947 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → ¬ 𝐴 = 𝐵) |
42 | 37, 41 | pm2.65da 813 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → ¬ 𝑒 = 𝐵) |
43 | 42 | neqned 2949 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ≠ 𝐵) |
44 | 1, 2, 22, 23, 24, 25, 26, 25, 28, 43, 39 | btwnhl2 26878 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴(𝐾‘𝐵)𝑒) |
45 | 7 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐷 ∈ 𝑃) |
46 | 9 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑋 ∈ 𝑃) |
47 | | simprl 767 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝐷𝐼𝑋)) |
48 | 1, 16, 2, 26, 45, 23, 46, 47 | tgbtwncom 26753 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝑋𝐼𝐷)) |
49 | 44, 48 | jca 511 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
50 | 49 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒 ∈ 𝑃) → ((𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
51 | 50 | reximdva 3202 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → (∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
52 | 21, 51 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
53 | 6 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐷 ∈ 𝑃) |
54 | 53 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ 𝑃) |
55 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷) |
56 | 55 | breq2d 5082 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝐴(𝐾‘𝐵)𝑒 ↔ 𝐴(𝐾‘𝐵)𝐷)) |
57 | 55 | eleq1d 2823 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷))) |
58 | 56, 57 | anbi12d 630 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷)))) |
59 | 14 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴 ∈ 𝑃) |
60 | 59 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ 𝑃) |
61 | 12 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐵 ∈ 𝑃) |
62 | 61 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐵 ∈ 𝑃) |
63 | 4 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG) |
64 | 63 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐺 ∈ TarskiG) |
65 | | hlpasch.7 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐷) |
66 | 1, 2, 22, 10, 6, 12, 4, 65 | hlcomd 26869 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷(𝐾‘𝐵)𝐶) |
67 | 66 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾‘𝐵)𝐶) |
68 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶 ∈ 𝑃) |
69 | 68 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶 ∈ 𝑃) |
70 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝑋𝐼𝐶)) |
71 | 70 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶)) |
72 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵) |
73 | 72 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝑋𝐼𝐶) = (𝐵𝐼𝐶)) |
74 | 71, 73 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐶)) |
75 | 1, 2, 22, 10, 6, 12, 4 | ishlg 26867 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐷 ↔ (𝐶 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))))) |
76 | 65, 75 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))) |
77 | 76 | simp1d 1140 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ≠ 𝐵) |
78 | 77 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶 ≠ 𝐵) |
79 | 38 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴 ≠ 𝐵) |
80 | 79 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ≠ 𝐵) |
81 | 1, 2, 22, 54, 69, 62, 64, 60, 74, 78, 80 | hlbtwn 26876 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐷(𝐾‘𝐵)𝐶 ↔ 𝐷(𝐾‘𝐵)𝐴)) |
82 | 67, 81 | mpbid 231 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾‘𝐵)𝐴) |
83 | 1, 2, 22, 54, 60, 62, 64, 82 | hlcomd 26869 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴(𝐾‘𝐵)𝐷) |
84 | 8 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ 𝑃) |
85 | 84 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 ∈ 𝑃) |
86 | 1, 16, 2, 64, 85, 54 | tgbtwntriv2 26752 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ (𝑋𝐼𝐷)) |
87 | 83, 86 | jca 511 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷))) |
88 | 54, 58, 87 | rspcedvd 3555 |
. . . 4
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
89 | 84 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → 𝑋 ∈ 𝑃) |
90 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) |
91 | 90 | breq2d 5082 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝐴(𝐾‘𝐵)𝑒 ↔ 𝐴(𝐾‘𝐵)𝑋)) |
92 | 90 | eleq1d 2823 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝑋 ∈ (𝑋𝐼𝐷))) |
93 | 91, 92 | anbi12d 630 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝑋 ∧ 𝑋 ∈ (𝑋𝐼𝐷)))) |
94 | 93 | ad4ant14 748 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝑋 ∧ 𝑋 ∈ (𝑋𝐼𝐷)))) |
95 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → 𝐴(𝐾‘𝐵)𝑋) |
96 | 1, 16, 2, 63, 84, 53 | tgbtwntriv1 26756 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ (𝑋𝐼𝐷)) |
97 | 96 | ad2antrr 722 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → 𝑋 ∈ (𝑋𝐼𝐷)) |
98 | 95, 97 | jca 511 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → (𝐴(𝐾‘𝐵)𝑋 ∧ 𝑋 ∈ (𝑋𝐼𝐷))) |
99 | 89, 94, 98 | rspcedvd 3555 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐴(𝐾‘𝐵)𝑋) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
100 | 53 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ 𝑃) |
101 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷) |
102 | 101 | breq2d 5082 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝐴(𝐾‘𝐵)𝑒 ↔ 𝐴(𝐾‘𝐵)𝐷)) |
103 | 101 | eleq1d 2823 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷))) |
104 | 102, 103 | anbi12d 630 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷)))) |
105 | 79 | ad2antrr 722 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ≠ 𝐵) |
106 | 1, 2, 22, 10, 6, 12, 4, 65 | hlne2 26871 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ≠ 𝐵) |
107 | 106 | ad4antr 728 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ≠ 𝐵) |
108 | 63 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐺 ∈ TarskiG) |
109 | 61 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ 𝑃) |
110 | 59 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ 𝑃) |
111 | 68 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐶 ∈ 𝑃) |
112 | 111 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐶 ∈ 𝑃) |
113 | 84 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝑋 ∈ 𝑃) |
114 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ (𝑋𝐼𝐴)) |
115 | 70 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶)) |
116 | 115 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝑋𝐼𝐶)) |
117 | 1, 16, 2, 108, 113, 109, 110, 112, 114, 116 | tgbtwnexch3 26759 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
118 | | simp-4r 780 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
119 | 1, 2, 108, 109, 110, 100, 112, 117, 118 | tgbtwnconn3 26842 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))) |
120 | 1, 2, 22, 14, 6, 12, 4 | ishlg 26867 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(𝐾‘𝐵)𝐷 ↔ (𝐴 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))))) |
121 | 120 | ad4antr 728 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾‘𝐵)𝐷 ↔ (𝐴 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))))) |
122 | 105, 107,
119, 121 | mpbir3and 1340 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴(𝐾‘𝐵)𝐷) |
123 | 1, 16, 2, 108, 113, 100 | tgbtwntriv2 26752 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝑋𝐼𝐷)) |
124 | 122, 123 | jca 511 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾‘𝐵)𝐷 ∧ 𝐷 ∈ (𝑋𝐼𝐷))) |
125 | 100, 104,
124 | rspcedvd 3555 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
126 | 8 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ∈ 𝑃) |
127 | 12 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
128 | 14 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
129 | 4 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
130 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ≠ 𝐵) |
131 | 130 | neneqd 2947 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → ¬ 𝑋 = 𝐵) |
132 | 63 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
133 | 132 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐺 ∈ TarskiG) |
134 | 126 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝑋 ∈ 𝑃) |
135 | 128 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ 𝑃) |
136 | 115 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝐶)) |
137 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐶) |
138 | 137 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → (𝑋𝐼𝑋) = (𝑋𝐼𝐶)) |
139 | 136, 138 | eleqtrrd 2842 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝑋)) |
140 | 1, 16, 2, 133, 134, 135, 139 | axtgbtwnid 26731 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐴) |
141 | 140 | olcd 870 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 = 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
142 | 132 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
143 | 127 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
144 | 111 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
145 | 126 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝑋 ∈ 𝑃) |
146 | 128 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
147 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝑋 ≠ 𝐶) |
148 | 147 | necomd 2998 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐶 ≠ 𝑋) |
149 | 148 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → ¬ 𝐶 = 𝑋) |
150 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ∈ 𝑃) |
151 | 106 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ≠ 𝐵) |
152 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) |
153 | 1, 2, 3, 132, 150, 127, 126, 151, 152 | lncom 26887 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝑋 ∈ (𝐷(LineG‘𝐺)𝐵)) |
154 | 77 | necomd 2998 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
155 | 154 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐵 ≠ 𝐶) |
156 | 66 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷(𝐾‘𝐵)𝐶) |
157 | 1, 2, 22, 150, 111, 127, 132, 3, 156 | hlln 26872 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ∈ (𝐶(LineG‘𝐺)𝐵)) |
158 | 1, 2, 3, 132, 127, 111, 150, 155, 157 | lncom 26887 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐶)) |
159 | 158 | orcd 869 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐷 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶)) |
160 | 1, 2, 3, 132, 126, 150, 127, 111, 153, 159 | coltr 26912 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶)) |
161 | 1, 3, 2, 132, 127, 111, 126, 160 | colrot1 26824 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐵 ∈ (𝐶(LineG‘𝐺)𝑋) ∨ 𝐶 = 𝑋)) |
162 | 161 | orcomd 867 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐶 = 𝑋 ∨ 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))) |
163 | 162 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (𝐶 = 𝑋 ∨ 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))) |
164 | 163 | ord 860 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (¬ 𝐶 = 𝑋 → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))) |
165 | 149, 164 | mpd 15 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)) |
166 | 1, 3, 2, 132, 126, 128, 111, 115 | btwncolg3 26822 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
167 | 166 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
168 | 1, 2, 3, 142, 143, 144, 145, 146, 165, 167 | coltr 26912 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) ∧ 𝑋 ≠ 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
169 | 141, 168 | pm2.61dane 3031 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴)) |
170 | 1, 3, 2, 132, 126, 128, 127, 169 | colrot2 26825 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐴 ∈ (𝐵(LineG‘𝐺)𝑋) ∨ 𝐵 = 𝑋)) |
171 | 1, 3, 2, 132, 127, 126, 128, 170 | colcom 26823 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐴 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵)) |
172 | 171 | orcomd 867 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝑋 = 𝐵 ∨ 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))) |
173 | 172 | ord 860 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (¬ 𝑋 = 𝐵 → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))) |
174 | 131, 173 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)) |
175 | 1, 2, 22, 126, 127, 128, 129, 128, 3, 174 | lnhl 26880 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → (𝐴(𝐾‘𝐵)𝑋 ∨ 𝐵 ∈ (𝑋𝐼𝐴))) |
176 | 99, 125, 175 | mpjaodan 955 |
. . . 4
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 ≠ 𝐵) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
177 | 88, 176 | pm2.61dane 3031 |
. . 3
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
178 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG) |
179 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝑋 ∈ 𝑃) |
180 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ 𝑃) |
181 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ 𝑃) |
182 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ 𝑃) |
183 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
184 | 1, 16, 2, 178, 179, 180, 68, 181, 182, 70, 183 | axtgpasch 26732 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) |
185 | 184 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) |
186 | | simplr 765 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ 𝑃) |
187 | 181 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴 ∈ 𝑃) |
188 | 180 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵 ∈ 𝑃) |
189 | 178 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐺 ∈ TarskiG) |
190 | | simprl 767 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐴𝐼𝐵)) |
191 | 1, 16, 2, 189, 187, 186, 188, 190 | tgbtwncom 26753 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐵𝐼𝐴)) |
192 | 38 | necomd 2998 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
193 | 192 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵 ≠ 𝐴) |
194 | 189 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG) |
195 | 6 | ad5antr 730 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ 𝑃) |
196 | 8 | ad5antr 730 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑋 ∈ 𝑃) |
197 | 188 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ 𝑃) |
198 | | simp-4r 780 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) |
199 | 106 | necomd 2998 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ≠ 𝐷) |
200 | 199 | ad5antr 730 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ≠ 𝐷) |
201 | 200 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐵 = 𝐷) |
202 | | ioran 980 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷) ↔ (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷)) |
203 | 198, 201,
202 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷)) |
204 | 1, 3, 2, 194, 197, 195, 196, 203 | ncolrot2 26828 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝐷 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵)) |
205 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵) |
206 | 186 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ 𝑃) |
207 | 1, 2, 3, 194, 195, 196, 197, 204 | ncolne1 26890 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ≠ 𝑋) |
208 | | simplrr 774 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷𝐼𝑋)) |
209 | 1, 2, 3, 194, 195, 196, 206, 207, 208 | btwnlng1 26884 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷(LineG‘𝐺)𝑋)) |
210 | 205, 209 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐷(LineG‘𝐺)𝑋)) |
211 | 1, 2, 3, 194, 195, 196, 207 | tglinerflx1 26898 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐷(LineG‘𝐺)𝑋)) |
212 | 106 | ad5antr 730 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ≠ 𝐵) |
213 | 212 | necomd 2998 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ≠ 𝐷) |
214 | 1, 2, 3, 194, 197, 195, 213 | tglinerflx1 26898 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐵(LineG‘𝐺)𝐷)) |
215 | 1, 2, 3, 194, 197, 195, 213 | tglinerflx2 26899 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐷)) |
216 | 1, 2, 3, 194, 195, 196, 197, 195, 204, 210, 211, 214, 215 | tglineinteq 26910 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐷) |
217 | 216, 201 | pm2.65da 813 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → ¬ 𝑒 = 𝐵) |
218 | 217 | neqned 2949 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ≠ 𝐵) |
219 | 1, 2, 22, 188, 187, 186, 189, 187, 191, 193, 218 | btwnhl1 26877 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒(𝐾‘𝐵)𝐴) |
220 | 1, 2, 22, 186, 187, 188, 189, 219 | hlcomd 26869 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴(𝐾‘𝐵)𝑒) |
221 | 178 | ad3antrrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐺 ∈ TarskiG) |
222 | 182 | ad3antrrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐷 ∈ 𝑃) |
223 | | simplr 765 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ 𝑃) |
224 | 179 | ad3antrrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑋 ∈ 𝑃) |
225 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝐷𝐼𝑋)) |
226 | 1, 16, 2, 221, 222, 223, 224, 225 | tgbtwncom 26753 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝑋𝐼𝐷)) |
227 | 226 | adantrl 712 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝑋𝐼𝐷)) |
228 | 220, 227 | jca 511 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
229 | 228 | ex 412 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 ∈ 𝑃) → ((𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
230 | 229 | reximdva 3202 |
. . . 4
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → (∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷)))) |
231 | 185, 230 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
232 | 177, 231 | pm2.61dan 809 |
. 2
⊢ ((𝜑 ∧ 𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |
233 | 76 | simp3d 1142 |
. 2
⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
234 | 52, 232, 233 | mpjaodan 955 |
1
⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) |