MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlpasch Structured version   Visualization version   GIF version

Theorem hlpasch 26550
Description: An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
Hypotheses
Ref Expression
hlpasch.p 𝑃 = (Base‘𝐺)
hlpasch.i 𝐼 = (Itv‘𝐺)
hlpasch.k 𝐾 = (hlG‘𝐺)
hlpasch.g (𝜑𝐺 ∈ TarskiG)
hlpasch.1 (𝜑𝐴𝑃)
hlpasch.2 (𝜑𝐵𝑃)
hlpasch.3 (𝜑𝐶𝑃)
hlpasch.4 (𝜑𝑋𝑃)
hlpasch.5 (𝜑𝐷𝑃)
hlpasch.6 (𝜑𝐴𝐵)
hlpasch.7 (𝜑𝐶(𝐾𝐵)𝐷)
hlpasch.8 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
Assertion
Ref Expression
hlpasch (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐺   𝑒,𝐼   𝑒,𝐾   𝑃,𝑒   𝑒,𝑋   𝜑,𝑒

Proof of Theorem hlpasch
StepHypRef Expression
1 hlpasch.p . . . 4 𝑃 = (Base‘𝐺)
2 hlpasch.i . . . 4 𝐼 = (Itv‘𝐺)
3 eqid 2798 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
4 hlpasch.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 hlpasch.5 . . . . 5 (𝜑𝐷𝑃)
76adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
8 hlpasch.4 . . . . 5 (𝜑𝑋𝑃)
98adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝑋𝑃)
10 hlpasch.3 . . . . 5 (𝜑𝐶𝑃)
1110adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
12 hlpasch.2 . . . . 5 (𝜑𝐵𝑃)
1312adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
14 hlpasch.1 . . . . 5 (𝜑𝐴𝑃)
1514adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴𝑃)
16 eqid 2798 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
17 simpr 488 . . . . 5 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
181, 16, 2, 5, 13, 11, 7, 17tgbtwncom 26282 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵))
19 hlpasch.8 . . . . 5 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
2019adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ (𝑋𝐼𝐶))
211, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20outpasch 26549 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)))
22 hlpasch.k . . . . . . 7 𝐾 = (hlG‘𝐺)
23 simplr 768 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝑃)
2413ad2antrr 725 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐵𝑃)
2515ad2antrr 725 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝑃)
265ad2antrr 725 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐺 ∈ TarskiG)
27 simprr 772 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝐵𝐼𝑒))
281, 16, 2, 26, 24, 25, 23, 27tgbtwncom 26282 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝑒𝐼𝐵))
2926adantr 484 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
3024adantr 484 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
3125adantr 484 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝑃)
32 simplrr 777 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝑒))
33 simpr 488 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
3433oveq2d 7151 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → (𝐵𝐼𝑒) = (𝐵𝐼𝐵))
3532, 34eleqtrd 2892 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
361, 16, 2, 29, 30, 31, 35axtgbtwnid 26260 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐴)
3736eqcomd 2804 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 = 𝐵)
38 hlpasch.6 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3938ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝐵)
4039adantr 484 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝐵)
4140neneqd 2992 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → ¬ 𝐴 = 𝐵)
4237, 41pm2.65da 816 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → ¬ 𝑒 = 𝐵)
4342neqned 2994 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝐵)
441, 2, 22, 23, 24, 25, 26, 25, 28, 43, 39btwnhl2 26407 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴(𝐾𝐵)𝑒)
457ad2antrr 725 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐷𝑃)
469ad2antrr 725 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑋𝑃)
47 simprl 770 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝐷𝐼𝑋))
481, 16, 2, 26, 45, 23, 46, 47tgbtwncom 26282 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝑋𝐼𝐷))
4944, 48jca 515 . . . . 5 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
5049ex 416 . . . 4 (((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5150reximdva 3233 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5221, 51mpd 15 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
536ad2antrr 725 . . . . . 6 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐷𝑃)
5453adantr 484 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷𝑃)
55 simpr 488 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
5655breq2d 5042 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
5755eleq1d 2874 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
5856, 57anbi12d 633 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
5914ad2antrr 725 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝑃)
6059adantr 484 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝑃)
6112ad2antrr 725 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐵𝑃)
6261adantr 484 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐵𝑃)
634ad2antrr 725 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
6463adantr 484 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐺 ∈ TarskiG)
65 hlpasch.7 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐷)
661, 2, 22, 10, 6, 12, 4, 65hlcomd 26398 . . . . . . . . 9 (𝜑𝐷(𝐾𝐵)𝐶)
6766ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐶)
6810adantr 484 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
6968ad2antrr 725 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝑃)
7019adantr 484 . . . . . . . . . . 11 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝑋𝐼𝐶))
7170ad2antrr 725 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
72 simpr 488 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵)
7372oveq1d 7150 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝑋𝐼𝐶) = (𝐵𝐼𝐶))
7471, 73eleqtrd 2892 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐶))
751, 2, 22, 10, 6, 12, 4ishlg 26396 . . . . . . . . . . . 12 (𝜑 → (𝐶(𝐾𝐵)𝐷 ↔ (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))))
7665, 75mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))))
7776simp1d 1139 . . . . . . . . . 10 (𝜑𝐶𝐵)
7877ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝐵)
7938ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝐵)
8079adantr 484 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝐵)
811, 2, 22, 54, 69, 62, 64, 60, 74, 78, 80hlbtwn 26405 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐷(𝐾𝐵)𝐶𝐷(𝐾𝐵)𝐴))
8267, 81mpbid 235 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐴)
831, 2, 22, 54, 60, 62, 64, 82hlcomd 26398 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
848ad2antrr 725 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋𝑃)
8584adantr 484 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋𝑃)
861, 16, 2, 64, 85, 54tgbtwntriv2 26281 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ (𝑋𝐼𝐷))
8783, 86jca 515 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
8854, 58, 87rspcedvd 3574 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
8984ad2antrr 725 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋𝑃)
90 simpr 488 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
9190breq2d 5042 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝑋))
9290eleq1d 2874 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝑋 ∈ (𝑋𝐼𝐷)))
9391, 92anbi12d 633 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
9493ad4ant14 751 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
95 simpr 488 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝑋)
961, 16, 2, 63, 84, 53tgbtwntriv1 26285 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ (𝑋𝐼𝐷))
9796ad2antrr 725 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋 ∈ (𝑋𝐼𝐷))
9895, 97jca 515 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷)))
9989, 94, 98rspcedvd 3574 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
10053ad2antrr 725 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝑃)
101 simpr 488 . . . . . . . 8 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
102101breq2d 5042 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
103101eleq1d 2874 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
104102, 103anbi12d 633 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
10579ad2antrr 725 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝐵)
1061, 2, 22, 10, 6, 12, 4, 65hlne2 26400 . . . . . . . . 9 (𝜑𝐷𝐵)
107106ad4antr 731 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝐵)
10863ad2antrr 725 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐺 ∈ TarskiG)
10961ad2antrr 725 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵𝑃)
11059ad2antrr 725 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝑃)
11168ad2antrr 725 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐶𝑃)
112111adantr 484 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐶𝑃)
11384ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝑋𝑃)
114 simpr 488 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ (𝑋𝐼𝐴))
11570ad2antrr 725 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
116115adantr 484 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝑋𝐼𝐶))
1171, 16, 2, 108, 113, 109, 110, 112, 114, 116tgbtwnexch3 26288 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝐵𝐼𝐶))
118 simp-4r 783 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
1191, 2, 108, 109, 110, 100, 112, 117, 118tgbtwnconn3 26371 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))
1201, 2, 22, 14, 6, 12, 4ishlg 26396 . . . . . . . . 9 (𝜑 → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
121120ad4antr 731 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
122105, 107, 119, 121mpbir3and 1339 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴(𝐾𝐵)𝐷)
1231, 16, 2, 108, 113, 100tgbtwntriv2 26281 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝑋𝐼𝐷))
124122, 123jca 515 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
125100, 104, 124rspcedvd 3574 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1268ad3antrrr 729 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝑃)
12712ad3antrrr 729 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝑃)
12814ad3antrrr 729 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴𝑃)
1294ad3antrrr 729 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
130 simpr 488 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝐵)
131130neneqd 2992 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ¬ 𝑋 = 𝐵)
13263adantr 484 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
133132adantr 484 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐺 ∈ TarskiG)
134126adantr 484 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋𝑃)
135128adantr 484 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴𝑃)
136115adantr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝐶))
137 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐶)
138137oveq2d 7151 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝑋𝐼𝑋) = (𝑋𝐼𝐶))
139136, 138eleqtrrd 2893 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝑋))
1401, 16, 2, 133, 134, 135, 139axtgbtwnid 26260 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐴)
141140olcd 871 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
142132adantr 484 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐺 ∈ TarskiG)
143127adantr 484 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵𝑃)
144111adantr 484 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑃)
145126adantr 484 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝑃)
146128adantr 484 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐴𝑃)
147 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝐶)
148147necomd 3042 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑋)
149148neneqd 2992 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → ¬ 𝐶 = 𝑋)
15053adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝑃)
151106ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝐵)
152 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
1531, 2, 3, 132, 150, 127, 126, 151, 152lncom 26416 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐷(LineG‘𝐺)𝐵))
15477necomd 3042 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵𝐶)
155154ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝐶)
15666ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷(𝐾𝐵)𝐶)
1571, 2, 22, 150, 111, 127, 132, 3, 156hlln 26401 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐶(LineG‘𝐺)𝐵))
1581, 2, 3, 132, 127, 111, 150, 155, 157lncom 26416 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐶))
159158orcd 870 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐷 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1601, 2, 3, 132, 126, 150, 127, 111, 153, 159coltr 26441 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1611, 3, 2, 132, 127, 111, 126, 160colrot1 26353 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝐶(LineG‘𝐺)𝑋) ∨ 𝐶 = 𝑋))
162161orcomd 868 . . . . . . . . . . . . . . . 16 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
163162adantr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
164163ord 861 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (¬ 𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
165149, 164mpd 15 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))
1661, 3, 2, 132, 126, 128, 111, 115btwncolg3 26351 . . . . . . . . . . . . . 14 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
167166adantr 484 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1681, 2, 3, 142, 143, 144, 145, 146, 165, 167coltr 26441 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
169141, 168pm2.61dane 3074 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1701, 3, 2, 132, 126, 128, 127, 169colrot2 26354 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝐵(LineG‘𝐺)𝑋) ∨ 𝐵 = 𝑋))
1711, 3, 2, 132, 127, 126, 128, 170colcom 26352 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
172171orcomd 868 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
173172ord 861 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (¬ 𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
174131, 173mpd 15 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))
1751, 2, 22, 126, 127, 128, 129, 128, 3, 174lnhl 26409 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴(𝐾𝐵)𝑋𝐵 ∈ (𝑋𝐼𝐴)))
17699, 125, 175mpjaodan 956 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
17788, 176pm2.61dane 3074 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1784adantr 484 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
1798adantr 484 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝑋𝑃)
18012adantr 484 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
18114adantr 484 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴𝑃)
1826adantr 484 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
183 simpr 488 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
1841, 16, 2, 178, 179, 180, 68, 181, 182, 70, 183axtgpasch 26261 . . . . 5 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
185184adantr 484 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
186 simplr 768 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝑃)
187181ad3antrrr 729 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴𝑃)
188180ad3antrrr 729 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝑃)
189178ad3antrrr 729 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐺 ∈ TarskiG)
190 simprl 770 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐴𝐼𝐵))
1911, 16, 2, 189, 187, 186, 188, 190tgbtwncom 26282 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐵𝐼𝐴))
19238necomd 3042 . . . . . . . . . 10 (𝜑𝐵𝐴)
193192ad4antr 731 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝐴)
194189adantr 484 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
1956ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑃)
1968ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑋𝑃)
197188adantr 484 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
198 simp-4r 783 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
199106necomd 3042 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐷)
200199ad5antr 733 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
201200neneqd 2992 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐵 = 𝐷)
202 ioran 981 . . . . . . . . . . . . . 14 (¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷) ↔ (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷))
203198, 201, 202sylanbrc 586 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷))
2041, 3, 2, 194, 197, 195, 196, 203ncolrot2 26357 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝐷 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
205 simpr 488 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
206186adantr 484 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒𝑃)
2071, 2, 3, 194, 195, 196, 197, 204ncolne1 26419 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑋)
208 simplrr 777 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷𝐼𝑋))
2091, 2, 3, 194, 195, 196, 206, 207, 208btwnlng1 26413 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷(LineG‘𝐺)𝑋))
210205, 209eqeltrrd 2891 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐷(LineG‘𝐺)𝑋))
2111, 2, 3, 194, 195, 196, 207tglinerflx1 26427 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐷(LineG‘𝐺)𝑋))
212106ad5antr 733 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝐵)
213212necomd 3042 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
2141, 2, 3, 194, 197, 195, 213tglinerflx1 26427 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐵(LineG‘𝐺)𝐷))
2151, 2, 3, 194, 197, 195, 213tglinerflx2 26428 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐷))
2161, 2, 3, 194, 195, 196, 197, 195, 204, 210, 211, 214, 215tglineinteq 26439 . . . . . . . . . . 11 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐷)
217216, 201pm2.65da 816 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → ¬ 𝑒 = 𝐵)
218217neqned 2994 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝐵)
2191, 2, 22, 188, 187, 186, 189, 187, 191, 193, 218btwnhl1 26406 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒(𝐾𝐵)𝐴)
2201, 2, 22, 186, 187, 188, 189, 219hlcomd 26398 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴(𝐾𝐵)𝑒)
221178ad3antrrr 729 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐺 ∈ TarskiG)
222182ad3antrrr 729 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐷𝑃)
223 simplr 768 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒𝑃)
224179ad3antrrr 729 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑋𝑃)
225 simpr 488 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝐷𝐼𝑋))
2261, 16, 2, 221, 222, 223, 224, 225tgbtwncom 26282 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝑋𝐼𝐷))
227226adantrl 715 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝑋𝐼𝐷))
228220, 227jca 515 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
229228ex 416 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
230229reximdva 3233 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
231185, 230mpd 15 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
232177, 231pm2.61dan 812 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
23376simp3d 1141 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
23452, 232, 233mpjaodan 956 1 (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  hlGchlg 26394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkgld 26246  df-trkg 26247  df-cgrg 26305  df-leg 26377  df-hlg 26395  df-mir 26447  df-rag 26488  df-perpg 26490
This theorem is referenced by:  inaghl  26639
  Copyright terms: Public domain W3C validator