MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn2 Structured version   Visualization version   GIF version

Theorem tgbtwnconn2 26639
Description: Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconn2.1 (𝜑𝐴𝐵)
tgbtwnconn2.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconn2.3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconn2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))

Proof of Theorem tgbtwnconn2
StepHypRef Expression
1 tgbtwnconn.p . . . 4 𝑃 = (Base‘𝐺)
2 eqid 2734 . . . 4 (dist‘𝐺) = (dist‘𝐺)
3 tgbtwnconn.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.a . . . . 5 (𝜑𝐴𝑃)
76adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐴𝑃)
8 tgbtwnconn.b . . . . 5 (𝜑𝐵𝑃)
98adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐵𝑃)
10 tgbtwnconn.c . . . . 5 (𝜑𝐶𝑃)
1110adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶𝑃)
12 tgbtwnconn.d . . . . 5 (𝜑𝐷𝑃)
1312adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐷𝑃)
14 tgbtwnconn2.2 . . . . 5 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
1514adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐵 ∈ (𝐴𝐼𝐶))
16 simpr 488 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ (𝐴𝐼𝐷))
171, 2, 3, 5, 7, 9, 11, 13, 15, 16tgbtwnexch3 26557 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
1817orcd 873 . 2 ((𝜑𝐶 ∈ (𝐴𝐼𝐷)) → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
194adantr 484 . . . 4 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
206adantr 484 . . . 4 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
218adantr 484 . . . 4 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
2212adantr 484 . . . 4 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
2310adantr 484 . . . 4 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
24 tgbtwnconn2.3 . . . . 5 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
2524adantr 484 . . . 4 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐷))
26 simpr 488 . . . 4 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ (𝐴𝐼𝐶))
271, 2, 3, 19, 20, 21, 22, 23, 25, 26tgbtwnexch3 26557 . . 3 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
2827olcd 874 . 2 ((𝜑𝐷 ∈ (𝐴𝐼𝐶)) → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
29 tgbtwnconn2.1 . . 3 (𝜑𝐴𝐵)
301, 3, 4, 6, 8, 10, 12, 29, 14, 24tgbtwnconn1 26638 . 2 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
3118, 28, 30mpjaodan 959 1 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2935  cfv 6369  (class class class)co 7202  Basecbs 16684  distcds 16776  TarskiGcstrkg 26493  Itvcitv 26499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397  df-trkgc 26511  df-trkgb 26512  df-trkgcb 26513  df-trkg 26516  df-cgrg 26574
This theorem is referenced by:  tgbtwnconn3  26640  tgbtwnconn22  26642  tgbtwnconnln2  26644  legtrid  26654  hlcgrex  26679  mirbtwnhl  26743  mirhl2  26744  krippenlem  26753  lnopp2hpgb  26826  flatcgra  26887
  Copyright terms: Public domain W3C validator