![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnconn2 | Structured version Visualization version GIF version |
Description: Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tgbtwnconn.p | ⊢ 𝑃 = (Base‘𝐺) |
tgbtwnconn.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgbtwnconn.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnconn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnconn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnconn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnconn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnconn2.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
tgbtwnconn2.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
tgbtwnconn2.3 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnconn2 | ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2778 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | tgbtwnconn.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgbtwnconn.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐺 ∈ TarskiG) |
6 | tgbtwnconn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐴 ∈ 𝑃) |
8 | tgbtwnconn.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐵 ∈ 𝑃) |
10 | tgbtwnconn.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ 𝑃) |
12 | tgbtwnconn.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | 12 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐷 ∈ 𝑃) |
14 | tgbtwnconn2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
15 | 14 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
16 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ (𝐴𝐼𝐷)) | |
17 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 16 | tgbtwnexch3 25982 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷)) |
18 | 17 | orcd 859 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
19 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG) |
20 | 6 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐴 ∈ 𝑃) |
21 | 8 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ 𝑃) |
22 | 12 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ 𝑃) |
23 | 10 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐶 ∈ 𝑃) |
24 | tgbtwnconn2.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
25 | 24 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
26 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ (𝐴𝐼𝐶)) | |
27 | 1, 2, 3, 19, 20, 21, 22, 23, 25, 26 | tgbtwnexch3 25982 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
28 | 27 | olcd 860 | . 2 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
29 | tgbtwnconn2.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
30 | 1, 3, 4, 6, 8, 10, 12, 29, 14, 24 | tgbtwnconn1 26063 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶))) |
31 | 18, 28, 30 | mpjaodan 941 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 distcds 16430 TarskiGcstrkg 25918 Itvcitv 25924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-pm 8209 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-dju 9124 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-xnn0 11780 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-hash 13506 df-word 13673 df-concat 13734 df-s1 13759 df-s2 14072 df-s3 14073 df-trkgc 25936 df-trkgb 25937 df-trkgcb 25938 df-trkg 25941 df-cgrg 25999 |
This theorem is referenced by: tgbtwnconn3 26065 tgbtwnconn22 26067 tgbtwnconnln2 26069 legtrid 26079 hlcgrex 26104 mirbtwnhl 26168 mirhl2 26169 krippenlem 26178 lnopp2hpgb 26251 flatcgra 26312 |
Copyright terms: Public domain | W3C validator |