| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trclubNEW | Structured version Visualization version GIF version | ||
| Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| Ref | Expression |
|---|---|
| trclubNEW.rex | ⊢ (𝜑 → 𝑅 ∈ V) |
| trclubNEW.rel | ⊢ (𝜑 → Rel 𝑅) |
| Ref | Expression |
|---|---|
| trclubNEW | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubNEW.rex | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | 1 | trclubgNEW 43716 | . 2 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
| 3 | trclubNEW.rel | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
| 4 | relssdmrn 6222 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
| 6 | ssequn1 4135 | . . 3 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
| 8 | 2, 7 | sseqtrd 3966 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∩ cint 4897 × cxp 5617 dom cdm 5619 ran crn 5620 ∘ ccom 5623 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |