| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trclubNEW | Structured version Visualization version GIF version | ||
| Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| Ref | Expression |
|---|---|
| trclubNEW.rex | ⊢ (𝜑 → 𝑅 ∈ V) |
| trclubNEW.rel | ⊢ (𝜑 → Rel 𝑅) |
| Ref | Expression |
|---|---|
| trclubNEW | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubNEW.rex | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | 1 | trclubgNEW 43600 | . 2 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
| 3 | trclubNEW.rel | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
| 4 | relssdmrn 6243 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
| 6 | ssequn1 4151 | . . 3 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
| 8 | 2, 7 | sseqtrd 3985 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ∪ cun 3914 ⊆ wss 3916 ∩ cint 4912 × cxp 5638 dom cdm 5640 ran crn 5641 ∘ ccom 5644 Rel wrel 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |