Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclubNEW Structured version   Visualization version   GIF version

Theorem trclubNEW 43717
Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.)
Hypotheses
Ref Expression
trclubNEW.rex (𝜑𝑅 ∈ V)
trclubNEW.rel (𝜑 → Rel 𝑅)
Assertion
Ref Expression
trclubNEW (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅))
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem trclubNEW
StepHypRef Expression
1 trclubNEW.rex . . 3 (𝜑𝑅 ∈ V)
21trclubgNEW 43716 . 2 (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3 trclubNEW.rel . . . 4 (𝜑 → Rel 𝑅)
4 relssdmrn 6222 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
53, 4syl 17 . . 3 (𝜑𝑅 ⊆ (dom 𝑅 × ran 𝑅))
6 ssequn1 4135 . . 3 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
75, 6sylib 218 . 2 (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
82, 7sseqtrd 3966 1 (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  cun 3895  wss 3897   cint 4897   × cxp 5617  dom cdm 5619  ran crn 5620  ccom 5623  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator