Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trclubNEW | Structured version Visualization version GIF version |
Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
Ref | Expression |
---|---|
trclubNEW.rex | ⊢ (𝜑 → 𝑅 ∈ V) |
trclubNEW.rel | ⊢ (𝜑 → Rel 𝑅) |
Ref | Expression |
---|---|
trclubNEW | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclubNEW.rex | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | trclubgNEW 41447 | . 2 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
3 | trclubNEW.rel | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
4 | relssdmrn 6193 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
6 | ssequn1 4125 | . . 3 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
8 | 2, 7 | sseqtrd 3971 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2714 Vcvv 3441 ∪ cun 3895 ⊆ wss 3897 ∩ cint 4892 × cxp 5605 dom cdm 5607 ran crn 5608 ∘ ccom 5611 Rel wrel 5612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-br 5088 df-opab 5150 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |