| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclubgi | Structured version Visualization version GIF version | ||
| Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure. (Contributed by RP, 3-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| trclubgi.rex | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| trclubgi | ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubgi.rex | . 2 ⊢ 𝑅 ∈ V | |
| 2 | trclublem 14902 | . 2 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) | |
| 3 | intss1 4913 | . 2 ⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} → ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
| 4 | 1, 2, 3 | mp2b 10 | 1 ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3436 ∪ cun 3901 ⊆ wss 3903 ∩ cint 4896 × cxp 5617 dom cdm 5619 ran crn 5620 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |