MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclubgi Structured version   Visualization version   GIF version

Theorem trclubgi 14939
Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure. (Contributed by RP, 3-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
trclubgi.rex 𝑅 ∈ V
Assertion
Ref Expression
trclubgi {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
Distinct variable group:   𝑅,𝑠

Proof of Theorem trclubgi
StepHypRef Expression
1 trclubgi.rex . 2 𝑅 ∈ V
2 trclublem 14937 . 2 (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
3 intss1 4923 . 2 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
41, 2, 3mp2b 10 1 {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  {cab 2707  Vcvv 3444  cun 3909  wss 3911   cint 4906   × cxp 5629  dom cdm 5631  ran crn 5632  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator