![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclubi | Structured version Visualization version GIF version |
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
trclubi.rel | ⊢ Rel 𝑅 |
trclubi.rex | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
trclubi | ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclubi.rel | . . . 4 ⊢ Rel 𝑅 | |
2 | relssdmrn 6266 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | ssequn1 4176 | . . . . 5 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅) |
6 | trclubi.rex | . . . 4 ⊢ 𝑅 ∈ V | |
7 | trclublem 14966 | . . . 4 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} |
9 | 5, 8 | eqeltrri 2825 | . 2 ⊢ (dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} |
10 | intss1 4961 | . 2 ⊢ ((dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} → ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)) | |
11 | 9, 10 | ax-mp 5 | 1 ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2704 Vcvv 3469 ∪ cun 3942 ⊆ wss 3944 ∩ cint 4944 × cxp 5670 dom cdm 5672 ran crn 5673 ∘ ccom 5676 Rel wrel 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |