| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclubi | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| trclubi.rel | ⊢ Rel 𝑅 |
| trclubi.rex | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| trclubi | ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubi.rel | . . . 4 ⊢ Rel 𝑅 | |
| 2 | relssdmrn 6229 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 3 | ssequn1 4145 | . . . . 5 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅) |
| 6 | trclubi.rex | . . . 4 ⊢ 𝑅 ∈ V | |
| 7 | trclublem 14937 | . . . 4 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} |
| 9 | 5, 8 | eqeltrri 2825 | . 2 ⊢ (dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} |
| 10 | intss1 4923 | . 2 ⊢ ((dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} → ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)) | |
| 11 | 9, 10 | ax-mp 5 | 1 ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 ∩ cint 4906 × cxp 5629 dom cdm 5631 ran crn 5632 ∘ ccom 5635 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |