MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclubi Structured version   Visualization version   GIF version

Theorem trclubi 15020
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
trclubi.rel Rel 𝑅
trclubi.rex 𝑅 ∈ V
Assertion
Ref Expression
trclubi {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
Distinct variable group:   𝑅,𝑠

Proof of Theorem trclubi
StepHypRef Expression
1 trclubi.rel . . . 4 Rel 𝑅
2 relssdmrn 6262 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
3 ssequn1 4166 . . . . 5 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
42, 3sylib 218 . . . 4 (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
51, 4ax-mp 5 . . 3 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
6 trclubi.rex . . . 4 𝑅 ∈ V
7 trclublem 15019 . . . 4 (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
86, 7ax-mp 5 . . 3 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
95, 8eqeltrri 2832 . 2 (dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
10 intss1 4944 . 2 ((dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅))
119, 10ax-mp 5 1 {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2714  Vcvv 3464  cun 3929  wss 3931   cint 4927   × cxp 5657  dom cdm 5659  ran crn 5660  ccom 5663  Rel wrel 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator