![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclubi | Structured version Visualization version GIF version |
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
trclubi.rel | ⊢ Rel 𝑅 |
trclubi.rex | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
trclubi | ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclubi.rel | . . . 4 ⊢ Rel 𝑅 | |
2 | relssdmrn 6290 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | ssequn1 4196 | . . . . 5 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
4 | 2, 3 | sylib 218 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅) |
6 | trclubi.rex | . . . 4 ⊢ 𝑅 ∈ V | |
7 | trclublem 15031 | . . . 4 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} |
9 | 5, 8 | eqeltrri 2836 | . 2 ⊢ (dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} |
10 | intss1 4968 | . 2 ⊢ ((dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} → ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)) | |
11 | 9, 10 | ax-mp 5 | 1 ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 ∪ cun 3961 ⊆ wss 3963 ∩ cint 4951 × cxp 5687 dom cdm 5689 ran crn 5690 ∘ ccom 5693 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |