MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclubi Structured version   Visualization version   GIF version

Theorem trclubi 14121
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
trclubi.rel Rel 𝑅
trclubi.rex 𝑅 ∈ V
Assertion
Ref Expression
trclubi {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
Distinct variable group:   𝑅,𝑠

Proof of Theorem trclubi
StepHypRef Expression
1 trclubi.rel . . . 4 Rel 𝑅
2 relssdmrn 5901 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
3 ssequn1 4012 . . . . 5 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
42, 3sylib 210 . . . 4 (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
51, 4ax-mp 5 . . 3 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
6 trclubi.rex . . . 4 𝑅 ∈ V
7 trclublem 14120 . . . 4 (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
86, 7ax-mp 5 . . 3 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
95, 8eqeltrri 2903 . 2 (dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
10 intss1 4714 . 2 ((dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅))
119, 10ax-mp 5 1 {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1656  wcel 2164  {cab 2811  Vcvv 3414  cun 3796  wss 3798   cint 4699   × cxp 5344  dom cdm 5346  ran crn 5347  ccom 5350  Rel wrel 5351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-int 4700  df-br 4876  df-opab 4938  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator