MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclubi Structured version   Visualization version   GIF version

Theorem trclubi 15032
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
trclubi.rel Rel 𝑅
trclubi.rex 𝑅 ∈ V
Assertion
Ref Expression
trclubi {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
Distinct variable group:   𝑅,𝑠

Proof of Theorem trclubi
StepHypRef Expression
1 trclubi.rel . . . 4 Rel 𝑅
2 relssdmrn 6290 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
3 ssequn1 4196 . . . . 5 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
42, 3sylib 218 . . . 4 (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
51, 4ax-mp 5 . . 3 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
6 trclubi.rex . . . 4 𝑅 ∈ V
7 trclublem 15031 . . . 4 (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
86, 7ax-mp 5 . . 3 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
95, 8eqeltrri 2836 . 2 (dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
10 intss1 4968 . 2 ((dom 𝑅 × ran 𝑅) ∈ {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅))
119, 10ax-mp 5 1 {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  {cab 2712  Vcvv 3478  cun 3961  wss 3963   cint 4951   × cxp 5687  dom cdm 5689  ran crn 5690  ccom 5693  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator