MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclub Structured version   Visualization version   GIF version

Theorem trclub 14964
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020.)
Assertion
Ref Expression
trclub ((𝑅𝑉 ∧ Rel 𝑅) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅))
Distinct variable group:   𝑅,𝑟
Allowed substitution hint:   𝑉(𝑟)

Proof of Theorem trclub
StepHypRef Expression
1 relssdmrn 6241 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
2 ssequn1 4149 . . . 4 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
31, 2sylib 218 . . 3 (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
4 trclublem 14961 . . 3 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
5 eleq1 2816 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ↔ (dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}))
65biimpa 476 . . 3 (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅) ∧ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}) → (dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
73, 4, 6syl2anr 597 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
8 intss1 4927 . 2 ((dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅))
97, 8syl 17 1 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  cun 3912  wss 3914   cint 4910   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator