Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trclub | Structured version Visualization version GIF version |
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020.) |
Ref | Expression |
---|---|
trclub | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdmrn 6161 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
2 | ssequn1 4110 | . . . 4 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (Rel 𝑅 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
4 | trclublem 14634 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
5 | eleq1 2826 | . . . 4 ⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)})) | |
6 | 5 | biimpa 476 | . . 3 ⊢ (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅) ∧ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) → (dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
7 | 3, 4, 6 | syl2anr 596 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
8 | intss1 4891 | . 2 ⊢ ((dom 𝑅 × ran 𝑅) ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅)) | |
9 | 7, 8 | syl 17 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∪ cun 3881 ⊆ wss 3883 ∩ cint 4876 × cxp 5578 dom cdm 5580 ran crn 5581 ∘ ccom 5584 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |