Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfi3 Structured version   Visualization version   GIF version

Theorem pwinfi3 42085
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfi3 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))

Proof of Theorem pwinfi3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tskuni 10760 . . . . 5 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇) → 𝑥𝑇)
213expia 1121 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 𝑥𝑇))
3 tskpw 10730 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
43ex 413 . . . . 5 (𝑇 ∈ Tarski → (𝑥𝑇 → 𝒫 𝑥𝑇))
54adantr 481 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 → 𝒫 𝑥𝑇))
62, 5jcad 513 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇)))
76ralrimiv 3144 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇))
8 pwinfig 42083 . 2 (∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))
97, 8syl 17 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3060  cdif 3941  𝒫 cpw 4596   cuni 4901  Tr wtr 5258  Fincfn 8922  Tarskictsk 10725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-ac2 10440
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-smo 8328  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-oi 9487  df-har 9534  df-r1 9741  df-card 9916  df-aleph 9917  df-cf 9918  df-acn 9919  df-ac 10093  df-wina 10661  df-ina 10662  df-tsk 10726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator