Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwinfi3 | Structured version Visualization version GIF version |
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
Ref | Expression |
---|---|
pwinfi3 | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskuni 10539 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) | |
2 | 1 | 3expia 1120 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥 ∈ 𝑇 → ∪ 𝑥 ∈ 𝑇)) |
3 | tskpw 10509 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
4 | 3 | ex 413 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → 𝒫 𝑥 ∈ 𝑇)) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥 ∈ 𝑇 → 𝒫 𝑥 ∈ 𝑇)) |
6 | 2, 5 | jcad 513 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥 ∈ 𝑇 → (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇))) |
7 | 6 | ralrimiv 3102 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇)) |
8 | pwinfig 41168 | . 2 ⊢ (∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | |
9 | 7, 8 | syl 17 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 𝒫 cpw 4533 ∪ cuni 4839 Tr wtr 5191 Fincfn 8733 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-smo 8177 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-r1 9522 df-card 9697 df-aleph 9698 df-cf 9699 df-acn 9700 df-ac 9872 df-wina 10440 df-ina 10441 df-tsk 10505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |