Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfi3 Structured version   Visualization version   GIF version

Theorem pwinfi3 43596
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfi3 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))

Proof of Theorem pwinfi3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tskuni 10669 . . . . 5 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇) → 𝑥𝑇)
213expia 1121 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 𝑥𝑇))
3 tskpw 10639 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
43ex 412 . . . . 5 (𝑇 ∈ Tarski → (𝑥𝑇 → 𝒫 𝑥𝑇))
54adantr 480 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 → 𝒫 𝑥𝑇))
62, 5jcad 512 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇)))
76ralrimiv 3123 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇))
8 pwinfig 43594 . 2 (∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))
97, 8syl 17 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  cdif 3894  𝒫 cpw 4545   cuni 4854  Tr wtr 5193  Fincfn 8864  Tarskictsk 10634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-ac2 10349
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-smo 8261  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-har 9438  df-r1 9652  df-card 9827  df-aleph 9828  df-cf 9829  df-acn 9830  df-ac 10002  df-wina 10570  df-ina 10571  df-tsk 10635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator