![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwinfi3 | Structured version Visualization version GIF version |
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
Ref | Expression |
---|---|
pwinfi3 | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskuni 10760 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) | |
2 | 1 | 3expia 1121 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥 ∈ 𝑇 → ∪ 𝑥 ∈ 𝑇)) |
3 | tskpw 10730 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
4 | 3 | ex 413 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → 𝒫 𝑥 ∈ 𝑇)) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥 ∈ 𝑇 → 𝒫 𝑥 ∈ 𝑇)) |
6 | 2, 5 | jcad 513 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥 ∈ 𝑇 → (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇))) |
7 | 6 | ralrimiv 3144 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇)) |
8 | pwinfig 42083 | . 2 ⊢ (∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | |
9 | 7, 8 | syl 17 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3060 ∖ cdif 3941 𝒫 cpw 4596 ∪ cuni 4901 Tr wtr 5258 Fincfn 8922 Tarskictsk 10725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-inf2 9618 ax-ac2 10440 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-smo 8328 df-recs 8353 df-rdg 8392 df-1o 8448 df-2o 8449 df-er 8686 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-oi 9487 df-har 9534 df-r1 9741 df-card 9916 df-aleph 9917 df-cf 9918 df-acn 9919 df-ac 10093 df-wina 10661 df-ina 10662 df-tsk 10726 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |