Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfi3 Structured version   Visualization version   GIF version

Theorem pwinfi3 40044
 Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfi3 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))

Proof of Theorem pwinfi3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tskuni 10181 . . . . 5 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇) → 𝑥𝑇)
213expia 1117 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 𝑥𝑇))
3 tskpw 10151 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
43ex 415 . . . . 5 (𝑇 ∈ Tarski → (𝑥𝑇 → 𝒫 𝑥𝑇))
54adantr 483 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 → 𝒫 𝑥𝑇))
62, 5jcad 515 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑥𝑇 → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇)))
76ralrimiv 3168 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇))
8 pwinfig 40042 . 2 (∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))
97, 8syl 17 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∈ wcel 2114  ∀wral 3125   ∖ cdif 3909  𝒫 cpw 4513  ∪ cuni 4812  Tr wtr 5146  Fincfn 8485  Tarskictsk 10146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-inf2 9080  ax-ac2 9861 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-iin 4896  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-om 7557  df-1st 7665  df-2nd 7666  df-wrecs 7923  df-smo 7959  df-recs 7984  df-rdg 8022  df-1o 8078  df-2o 8079  df-oadd 8082  df-er 8265  df-map 8384  df-ixp 8438  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-oi 8950  df-har 8998  df-r1 9169  df-card 9344  df-aleph 9345  df-cf 9346  df-acn 9347  df-ac 9518  df-wina 10082  df-ina 10083  df-tsk 10147 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator