MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmscl Structured version   Visualization version   GIF version

Theorem ulmscl 26315
Description: Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmscl (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)

Proof of Theorem ulmscl
StepHypRef Expression
1 df-br 5090 . 2 (𝐹(⇝𝑢𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (⇝𝑢𝑆))
2 elfvex 6857 . 2 (⟨𝐹, 𝐺⟩ ∈ (⇝𝑢𝑆) → 𝑆 ∈ V)
31, 2sylbi 217 1 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cop 4579   class class class wbr 5089  cfv 6481  𝑢culm 26312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-dm 5624  df-iota 6437  df-fv 6489
This theorem is referenced by:  ulmcl  26317  ulmf  26318  ulmi  26322  ulmclm  26323  ulmres  26324  ulmshftlem  26325  ulmss  26333  ulmdvlem1  26336  ulmdvlem3  26338  iblulm  26343  itgulm2  26345
  Copyright terms: Public domain W3C validator