| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmscl | Structured version Visualization version GIF version | ||
| Description: Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulmscl | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆)) | |
| 2 | elfvex 6896 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆) → 𝑆 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 ‘cfv 6511 ⇝𝑢culm 26285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: ulmcl 26290 ulmf 26291 ulmi 26295 ulmclm 26296 ulmres 26297 ulmshftlem 26298 ulmss 26306 ulmdvlem1 26309 ulmdvlem3 26311 iblulm 26316 itgulm2 26318 |
| Copyright terms: Public domain | W3C validator |