| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmscl | Structured version Visualization version GIF version | ||
| Description: Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulmscl | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆)) | |
| 2 | elfvex 6857 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆) → 𝑆 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 ‘cfv 6481 ⇝𝑢culm 26312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: ulmcl 26317 ulmf 26318 ulmi 26322 ulmclm 26323 ulmres 26324 ulmshftlem 26325 ulmss 26333 ulmdvlem1 26336 ulmdvlem3 26338 iblulm 26343 itgulm2 26345 |
| Copyright terms: Public domain | W3C validator |