MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmscl Structured version   Visualization version   GIF version

Theorem ulmscl 26288
Description: Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmscl (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)

Proof of Theorem ulmscl
StepHypRef Expression
1 df-br 5108 . 2 (𝐹(⇝𝑢𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (⇝𝑢𝑆))
2 elfvex 6896 . 2 (⟨𝐹, 𝐺⟩ ∈ (⇝𝑢𝑆) → 𝑆 ∈ V)
31, 2sylbi 217 1 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107  cfv 6511  𝑢culm 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519
This theorem is referenced by:  ulmcl  26290  ulmf  26291  ulmi  26295  ulmclm  26296  ulmres  26297  ulmshftlem  26298  ulmss  26306  ulmdvlem1  26309  ulmdvlem3  26311  iblulm  26316  itgulm2  26318
  Copyright terms: Public domain W3C validator