![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmscl | Structured version Visualization version GIF version |
Description: Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
ulmscl | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5167 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆)) | |
2 | elfvex 6958 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆) → 𝑆 ∈ V) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 ‘cfv 6573 ⇝𝑢culm 26437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: ulmcl 26442 ulmf 26443 ulmi 26447 ulmclm 26448 ulmres 26449 ulmshftlem 26450 ulmss 26458 ulmdvlem1 26461 ulmdvlem3 26463 iblulm 26468 itgulm2 26470 |
Copyright terms: Public domain | W3C validator |