MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshftlem Structured version   Visualization version   GIF version

Theorem ulmshftlem 26323
Description: Lemma for ulmshft 26324. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshftlem (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshftlem
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . . . . 6 𝑍 = (ℤ𝑀)
2 ulmshft.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32ad2antrr 726 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 ulmshft.f . . . . . . 7 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
54ad2antrr 726 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 eqidd 2732 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ (𝑚𝑍𝑧𝑆)) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
7 eqidd 2732 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
8 simplr 768 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
9 simpr 484 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
101, 3, 5, 6, 7, 8, 9ulmi 26320 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥)
11 simpr 484 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖𝑍)
1211, 1eleqtrdi 2841 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
13 ulmshft.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
1413ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝐾 ∈ ℤ)
15 eluzadd 12758 . . . . . . . . 9 ((𝑖 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
1612, 14, 15syl2anc 584 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
17 ulmshft.w . . . . . . . 8 𝑊 = (ℤ‘(𝑀 + 𝐾))
1816, 17eleqtrrdi 2842 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ 𝑊)
19 eluzelz 12739 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
2012, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
2120adantr 480 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑖 ∈ ℤ)
2213adantr 480 . . . . . . . . . . 11 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐾 ∈ ℤ)
2322ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝐾 ∈ ℤ)
24 simpr 484 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑘 ∈ (ℤ‘(𝑖 + 𝐾)))
25 eluzsub 12759 . . . . . . . . . 10 ((𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
2621, 23, 24, 25syl3anc 1373 . . . . . . . . 9 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
27 fveq2 6822 . . . . . . . . . . . . . 14 (𝑚 = (𝑘𝐾) → (𝐹𝑚) = (𝐹‘(𝑘𝐾)))
2827fveq1d 6824 . . . . . . . . . . . . 13 (𝑚 = (𝑘𝐾) → ((𝐹𝑚)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
2928fvoveq1d 7368 . . . . . . . . . . . 12 (𝑚 = (𝑘𝐾) → (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))))
3029breq1d 5101 . . . . . . . . . . 11 (𝑚 = (𝑘𝐾) → ((abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3130ralbidv 3155 . . . . . . . . . 10 (𝑚 = (𝑘𝐾) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3231rspcv 3573 . . . . . . . . 9 ((𝑘𝐾) ∈ (ℤ𝑖) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3326, 32syl 17 . . . . . . . 8 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3433ralrimdva 3132 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
35 fveq2 6822 . . . . . . . . 9 (𝑗 = (𝑖 + 𝐾) → (ℤ𝑗) = (ℤ‘(𝑖 + 𝐾)))
3635raleqdv 3292 . . . . . . . 8 (𝑗 = (𝑖 + 𝐾) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3736rspcev 3577 . . . . . . 7 (((𝑖 + 𝐾) ∈ 𝑊 ∧ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
3818, 34, 37syl6an 684 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3938rexlimdva 3133 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → (∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
4010, 39mpd 15 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
4140ralrimiva 3124 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
422, 13zaddcld 12578 . . . . 5 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4342adantr 480 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝑀 + 𝐾) ∈ ℤ)
44 ulmshft.h . . . . . 6 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
454adantr 480 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
462adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
4713adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
48 simpr 484 . . . . . . . . . 10 ((𝜑𝑛𝑊) → 𝑛𝑊)
4948, 17eleqtrdi 2841 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
50 eluzsub 12759 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
5146, 47, 49, 50syl3anc 1373 . . . . . . . 8 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
5251, 1eleqtrrdi 2842 . . . . . . 7 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
5345, 52ffvelcdmd 7018 . . . . . 6 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
5444, 53fmpt3d 7049 . . . . 5 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
5554adantr 480 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻:𝑊⟶(ℂ ↑m 𝑆))
5644ad2antrr 726 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
5756fveq1d 6824 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘))
58 fvoveq1 7369 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘(𝑛𝐾)) = (𝐹‘(𝑘𝐾)))
59 eqid 2731 . . . . . . . 8 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
60 fvex 6835 . . . . . . . 8 (𝐹‘(𝑘𝐾)) ∈ V
6158, 59, 60fvmpt 6929 . . . . . . 7 (𝑘𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6261ad2antrl 728 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6357, 62eqtrd 2766 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = (𝐹‘(𝑘𝐾)))
6463fveq1d 6824 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐻𝑘)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
65 eqidd 2732 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
66 ulmcl 26315 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
6766adantl 481 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐺:𝑆⟶ℂ)
68 ulmscl 26313 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6968adantl 481 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝑆 ∈ V)
7017, 43, 55, 64, 65, 67, 69ulm2 26319 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝐻(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
7141, 70mpbird 257 . 2 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻(⇝𝑢𝑆)𝐺)
7271ex 412 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11001   + caddc 11006   < clt 11143  cmin 11341  cz 12465  cuz 12729  +crp 12887  abscabs 15138  𝑢culm 26310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-ulm 26311
This theorem is referenced by:  ulmshft  26324
  Copyright terms: Public domain W3C validator