MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshftlem Structured version   Visualization version   GIF version

Theorem ulmshftlem 24660
Description: Lemma for ulmshft 24661. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshftlem (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshftlem
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . . . . 6 𝑍 = (ℤ𝑀)
2 ulmshft.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32ad2antrr 722 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 ulmshft.f . . . . . . 7 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
54ad2antrr 722 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
6 eqidd 2796 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ (𝑚𝑍𝑧𝑆)) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
7 eqidd 2796 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
8 simplr 765 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
9 simpr 485 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
101, 3, 5, 6, 7, 8, 9ulmi 24657 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥)
11 simpr 485 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖𝑍)
1211, 1syl6eleq 2893 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
13 ulmshft.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
1413ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝐾 ∈ ℤ)
15 eluzadd 12122 . . . . . . . . 9 ((𝑖 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
1612, 14, 15syl2anc 584 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
17 ulmshft.w . . . . . . . 8 𝑊 = (ℤ‘(𝑀 + 𝐾))
1816, 17syl6eleqr 2894 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ 𝑊)
19 eluzelz 12103 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
2012, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
2120adantr 481 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑖 ∈ ℤ)
2213adantr 481 . . . . . . . . . . 11 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐾 ∈ ℤ)
2322ad3antrrr 726 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝐾 ∈ ℤ)
24 simpr 485 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑘 ∈ (ℤ‘(𝑖 + 𝐾)))
25 eluzsub 12123 . . . . . . . . . 10 ((𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
2621, 23, 24, 25syl3anc 1364 . . . . . . . . 9 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
27 fveq2 6538 . . . . . . . . . . . . . 14 (𝑚 = (𝑘𝐾) → (𝐹𝑚) = (𝐹‘(𝑘𝐾)))
2827fveq1d 6540 . . . . . . . . . . . . 13 (𝑚 = (𝑘𝐾) → ((𝐹𝑚)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
2928fvoveq1d 7038 . . . . . . . . . . . 12 (𝑚 = (𝑘𝐾) → (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))))
3029breq1d 4972 . . . . . . . . . . 11 (𝑚 = (𝑘𝐾) → ((abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3130ralbidv 3164 . . . . . . . . . 10 (𝑚 = (𝑘𝐾) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3231rspcv 3555 . . . . . . . . 9 ((𝑘𝐾) ∈ (ℤ𝑖) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3326, 32syl 17 . . . . . . . 8 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3433ralrimdva 3156 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
35 fveq2 6538 . . . . . . . . 9 (𝑗 = (𝑖 + 𝐾) → (ℤ𝑗) = (ℤ‘(𝑖 + 𝐾)))
3635raleqdv 3375 . . . . . . . 8 (𝑗 = (𝑖 + 𝐾) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3736rspcev 3559 . . . . . . 7 (((𝑖 + 𝐾) ∈ 𝑊 ∧ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
3818, 34, 37syl6an 680 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3938rexlimdva 3247 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → (∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
4010, 39mpd 15 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
4140ralrimiva 3149 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
422, 13zaddcld 11940 . . . . 5 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4342adantr 481 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝑀 + 𝐾) ∈ ℤ)
44 ulmshft.h . . . . . 6 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
454adantr 481 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
462adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
4713adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
48 simpr 485 . . . . . . . . . 10 ((𝜑𝑛𝑊) → 𝑛𝑊)
4948, 17syl6eleq 2893 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
50 eluzsub 12123 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
5146, 47, 49, 50syl3anc 1364 . . . . . . . 8 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
5251, 1syl6eleqr 2894 . . . . . . 7 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
5345, 52ffvelrnd 6717 . . . . . 6 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑𝑚 𝑆))
5444, 53fmpt3d 6743 . . . . 5 (𝜑𝐻:𝑊⟶(ℂ ↑𝑚 𝑆))
5554adantr 481 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻:𝑊⟶(ℂ ↑𝑚 𝑆))
5644ad2antrr 722 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
5756fveq1d 6540 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘))
58 fvoveq1 7039 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘(𝑛𝐾)) = (𝐹‘(𝑘𝐾)))
59 eqid 2795 . . . . . . . 8 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
60 fvex 6551 . . . . . . . 8 (𝐹‘(𝑘𝐾)) ∈ V
6158, 59, 60fvmpt 6635 . . . . . . 7 (𝑘𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6261ad2antrl 724 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6357, 62eqtrd 2831 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = (𝐹‘(𝑘𝐾)))
6463fveq1d 6540 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐻𝑘)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
65 eqidd 2796 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
66 ulmcl 24652 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
6766adantl 482 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐺:𝑆⟶ℂ)
68 ulmscl 24650 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6968adantl 482 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝑆 ∈ V)
7017, 43, 55, 64, 65, 67, 69ulm2 24656 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝐻(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
7141, 70mpbird 258 . 2 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻(⇝𝑢𝑆)𝐺)
7271ex 413 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106  Vcvv 3437   class class class wbr 4962  cmpt 5041  wf 6221  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  cc 10381   + caddc 10386   < clt 10521  cmin 10717  cz 11829  cuz 12093  +crp 12239  abscabs 14427  𝑢culm 24647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-ulm 24648
This theorem is referenced by:  ulmshft  24661
  Copyright terms: Public domain W3C validator