MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshftlem Structured version   Visualization version   GIF version

Theorem ulmshftlem 25281
Description: Lemma for ulmshft 25282. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshftlem (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshftlem
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . . . . 6 𝑍 = (ℤ𝑀)
2 ulmshft.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32ad2antrr 726 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 ulmshft.f . . . . . . 7 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
54ad2antrr 726 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 eqidd 2738 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ (𝑚𝑍𝑧𝑆)) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
7 eqidd 2738 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
8 simplr 769 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
9 simpr 488 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
101, 3, 5, 6, 7, 8, 9ulmi 25278 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥)
11 simpr 488 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖𝑍)
1211, 1eleqtrdi 2848 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
13 ulmshft.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
1413ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝐾 ∈ ℤ)
15 eluzadd 12469 . . . . . . . . 9 ((𝑖 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
1612, 14, 15syl2anc 587 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
17 ulmshft.w . . . . . . . 8 𝑊 = (ℤ‘(𝑀 + 𝐾))
1816, 17eleqtrrdi 2849 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ 𝑊)
19 eluzelz 12448 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
2012, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
2120adantr 484 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑖 ∈ ℤ)
2213adantr 484 . . . . . . . . . . 11 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐾 ∈ ℤ)
2322ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝐾 ∈ ℤ)
24 simpr 488 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑘 ∈ (ℤ‘(𝑖 + 𝐾)))
25 eluzsub 12470 . . . . . . . . . 10 ((𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
2621, 23, 24, 25syl3anc 1373 . . . . . . . . 9 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
27 fveq2 6717 . . . . . . . . . . . . . 14 (𝑚 = (𝑘𝐾) → (𝐹𝑚) = (𝐹‘(𝑘𝐾)))
2827fveq1d 6719 . . . . . . . . . . . . 13 (𝑚 = (𝑘𝐾) → ((𝐹𝑚)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
2928fvoveq1d 7235 . . . . . . . . . . . 12 (𝑚 = (𝑘𝐾) → (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))))
3029breq1d 5063 . . . . . . . . . . 11 (𝑚 = (𝑘𝐾) → ((abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3130ralbidv 3118 . . . . . . . . . 10 (𝑚 = (𝑘𝐾) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3231rspcv 3532 . . . . . . . . 9 ((𝑘𝐾) ∈ (ℤ𝑖) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3326, 32syl 17 . . . . . . . 8 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3433ralrimdva 3110 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
35 fveq2 6717 . . . . . . . . 9 (𝑗 = (𝑖 + 𝐾) → (ℤ𝑗) = (ℤ‘(𝑖 + 𝐾)))
3635raleqdv 3325 . . . . . . . 8 (𝑗 = (𝑖 + 𝐾) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3736rspcev 3537 . . . . . . 7 (((𝑖 + 𝐾) ∈ 𝑊 ∧ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
3818, 34, 37syl6an 684 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3938rexlimdva 3203 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → (∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
4010, 39mpd 15 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
4140ralrimiva 3105 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
422, 13zaddcld 12286 . . . . 5 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4342adantr 484 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝑀 + 𝐾) ∈ ℤ)
44 ulmshft.h . . . . . 6 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
454adantr 484 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
462adantr 484 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
4713adantr 484 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
48 simpr 488 . . . . . . . . . 10 ((𝜑𝑛𝑊) → 𝑛𝑊)
4948, 17eleqtrdi 2848 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
50 eluzsub 12470 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
5146, 47, 49, 50syl3anc 1373 . . . . . . . 8 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
5251, 1eleqtrrdi 2849 . . . . . . 7 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
5345, 52ffvelrnd 6905 . . . . . 6 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
5444, 53fmpt3d 6933 . . . . 5 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
5554adantr 484 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻:𝑊⟶(ℂ ↑m 𝑆))
5644ad2antrr 726 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
5756fveq1d 6719 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘))
58 fvoveq1 7236 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘(𝑛𝐾)) = (𝐹‘(𝑘𝐾)))
59 eqid 2737 . . . . . . . 8 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
60 fvex 6730 . . . . . . . 8 (𝐹‘(𝑘𝐾)) ∈ V
6158, 59, 60fvmpt 6818 . . . . . . 7 (𝑘𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6261ad2antrl 728 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6357, 62eqtrd 2777 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = (𝐹‘(𝑘𝐾)))
6463fveq1d 6719 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐻𝑘)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
65 eqidd 2738 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
66 ulmcl 25273 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
6766adantl 485 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐺:𝑆⟶ℂ)
68 ulmscl 25271 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6968adantl 485 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝑆 ∈ V)
7017, 43, 55, 64, 65, 67, 69ulm2 25277 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝐻(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
7141, 70mpbird 260 . 2 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻(⇝𝑢𝑆)𝐺)
7271ex 416 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727   + caddc 10732   < clt 10867  cmin 11062  cz 12176  cuz 12438  +crp 12586  abscabs 14797  𝑢culm 25268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-ulm 25269
This theorem is referenced by:  ulmshft  25282
  Copyright terms: Public domain W3C validator