MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshftlem Structured version   Visualization version   GIF version

Theorem ulmshftlem 25453
Description: Lemma for ulmshft 25454. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshftlem (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshftlem
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . . . . 6 𝑍 = (ℤ𝑀)
2 ulmshft.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32ad2antrr 722 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 ulmshft.f . . . . . . 7 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
54ad2antrr 722 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 eqidd 2739 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ (𝑚𝑍𝑧𝑆)) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
7 eqidd 2739 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
8 simplr 765 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
9 simpr 484 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
101, 3, 5, 6, 7, 8, 9ulmi 25450 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥)
11 simpr 484 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖𝑍)
1211, 1eleqtrdi 2849 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
13 ulmshft.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
1413ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝐾 ∈ ℤ)
15 eluzadd 12542 . . . . . . . . 9 ((𝑖 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
1612, 14, 15syl2anc 583 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
17 ulmshft.w . . . . . . . 8 𝑊 = (ℤ‘(𝑀 + 𝐾))
1816, 17eleqtrrdi 2850 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ 𝑊)
19 eluzelz 12521 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
2012, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
2120adantr 480 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑖 ∈ ℤ)
2213adantr 480 . . . . . . . . . . 11 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐾 ∈ ℤ)
2322ad3antrrr 726 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝐾 ∈ ℤ)
24 simpr 484 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑘 ∈ (ℤ‘(𝑖 + 𝐾)))
25 eluzsub 12543 . . . . . . . . . 10 ((𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
2621, 23, 24, 25syl3anc 1369 . . . . . . . . 9 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
27 fveq2 6756 . . . . . . . . . . . . . 14 (𝑚 = (𝑘𝐾) → (𝐹𝑚) = (𝐹‘(𝑘𝐾)))
2827fveq1d 6758 . . . . . . . . . . . . 13 (𝑚 = (𝑘𝐾) → ((𝐹𝑚)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
2928fvoveq1d 7277 . . . . . . . . . . . 12 (𝑚 = (𝑘𝐾) → (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))))
3029breq1d 5080 . . . . . . . . . . 11 (𝑚 = (𝑘𝐾) → ((abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3130ralbidv 3120 . . . . . . . . . 10 (𝑚 = (𝑘𝐾) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3231rspcv 3547 . . . . . . . . 9 ((𝑘𝐾) ∈ (ℤ𝑖) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3326, 32syl 17 . . . . . . . 8 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3433ralrimdva 3112 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
35 fveq2 6756 . . . . . . . . 9 (𝑗 = (𝑖 + 𝐾) → (ℤ𝑗) = (ℤ‘(𝑖 + 𝐾)))
3635raleqdv 3339 . . . . . . . 8 (𝑗 = (𝑖 + 𝐾) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3736rspcev 3552 . . . . . . 7 (((𝑖 + 𝐾) ∈ 𝑊 ∧ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
3818, 34, 37syl6an 680 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3938rexlimdva 3212 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → (∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
4010, 39mpd 15 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
4140ralrimiva 3107 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
422, 13zaddcld 12359 . . . . 5 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4342adantr 480 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝑀 + 𝐾) ∈ ℤ)
44 ulmshft.h . . . . . 6 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
454adantr 480 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
462adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
4713adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
48 simpr 484 . . . . . . . . . 10 ((𝜑𝑛𝑊) → 𝑛𝑊)
4948, 17eleqtrdi 2849 . . . . . . . . 9 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
50 eluzsub 12543 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
5146, 47, 49, 50syl3anc 1369 . . . . . . . 8 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
5251, 1eleqtrrdi 2850 . . . . . . 7 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
5345, 52ffvelrnd 6944 . . . . . 6 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
5444, 53fmpt3d 6972 . . . . 5 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
5554adantr 480 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻:𝑊⟶(ℂ ↑m 𝑆))
5644ad2antrr 722 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
5756fveq1d 6758 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘))
58 fvoveq1 7278 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘(𝑛𝐾)) = (𝐹‘(𝑘𝐾)))
59 eqid 2738 . . . . . . . 8 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
60 fvex 6769 . . . . . . . 8 (𝐹‘(𝑘𝐾)) ∈ V
6158, 59, 60fvmpt 6857 . . . . . . 7 (𝑘𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6261ad2antrl 724 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6357, 62eqtrd 2778 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = (𝐹‘(𝑘𝐾)))
6463fveq1d 6758 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐻𝑘)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
65 eqidd 2739 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
66 ulmcl 25445 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
6766adantl 481 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐺:𝑆⟶ℂ)
68 ulmscl 25443 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6968adantl 481 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝑆 ∈ V)
7017, 43, 55, 64, 65, 67, 69ulm2 25449 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝐻(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
7141, 70mpbird 256 . 2 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻(⇝𝑢𝑆)𝐺)
7271ex 412 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800   + caddc 10805   < clt 10940  cmin 11135  cz 12249  cuz 12511  +crp 12659  abscabs 14873  𝑢culm 25440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-ulm 25441
This theorem is referenced by:  ulmshft  25454
  Copyright terms: Public domain W3C validator